{"title":"折射率为n(x)=1的亥姆霍兹传输问题聚类特征值的高阶元自适应协调混合方法","authors":"Jinhua Feng, Shixi Wang, Hai Bi, Yidu Yang","doi":"10.1016/j.camwa.2025.07.017","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the conforming mixed method for the Helmholtz transmission eigenvalue problem in cases where the scatterers have the same permeability in 2D or the same sound speed in 3D as the surrounding medium. Based on the work of Cakoni et al. (2009) <span><span>[22]</span></span> and Liu et al. (2023) <span><span>[23]</span></span>, we study the approximation of high-order elements for the clustered eigenvalues of the problem. We present an a priori error estimate, derive an a posteriori error estimator, and prove the reliability of the estimator for the approximate eigenvalues and the approximate eigenspaces. Numerical experiments show that our method is efficient and can compute the approximate eigenvalues with high precision.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"196 ","pages":"Pages 201-217"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An adaptive conforming mixed method with high-order elements for clustered eigenvalues of the Helmholtz transmission problem with index of refraction n(x)=1\",\"authors\":\"Jinhua Feng, Shixi Wang, Hai Bi, Yidu Yang\",\"doi\":\"10.1016/j.camwa.2025.07.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we investigate the conforming mixed method for the Helmholtz transmission eigenvalue problem in cases where the scatterers have the same permeability in 2D or the same sound speed in 3D as the surrounding medium. Based on the work of Cakoni et al. (2009) <span><span>[22]</span></span> and Liu et al. (2023) <span><span>[23]</span></span>, we study the approximation of high-order elements for the clustered eigenvalues of the problem. We present an a priori error estimate, derive an a posteriori error estimator, and prove the reliability of the estimator for the approximate eigenvalues and the approximate eigenspaces. Numerical experiments show that our method is efficient and can compute the approximate eigenvalues with high precision.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"196 \",\"pages\":\"Pages 201-217\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125003049\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003049","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了散射体在二维中与周围介质具有相同渗透率或在三维中与周围介质具有相同声速的情况下亥姆霍兹传输本征值问题的一致性混合方法。基于Cakoni et al.(2009)[22]和Liu et al.(2023)[23]的工作,我们研究了问题聚类特征值的高阶元素逼近。给出了一个先验误差估计,导出了一个后验误差估计量,并证明了估计量对近似特征值和近似特征空间的可靠性。数值实验表明,该方法是有效的,能以较高的精度计算出近似特征值。
An adaptive conforming mixed method with high-order elements for clustered eigenvalues of the Helmholtz transmission problem with index of refraction n(x)=1
In this paper, we investigate the conforming mixed method for the Helmholtz transmission eigenvalue problem in cases where the scatterers have the same permeability in 2D or the same sound speed in 3D as the surrounding medium. Based on the work of Cakoni et al. (2009) [22] and Liu et al. (2023) [23], we study the approximation of high-order elements for the clustered eigenvalues of the problem. We present an a priori error estimate, derive an a posteriori error estimator, and prove the reliability of the estimator for the approximate eigenvalues and the approximate eigenspaces. Numerical experiments show that our method is efficient and can compute the approximate eigenvalues with high precision.
期刊介绍:
Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).