设计高容量和稳定的O3型Na层状氧化物的多元素组成调制策略

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xubin Wang, Wenfeng Yang, Yang Yang, Jiao Zhang, Hao Guo, Bowen Wang, Yaxiang Lu, Rong Yu, Liquan Chen, Yong‐sheng Hu
{"title":"设计高容量和稳定的O3型Na层状氧化物的多元素组成调制策略","authors":"Xubin Wang, Wenfeng Yang, Yang Yang, Jiao Zhang, Hao Guo, Bowen Wang, Yaxiang Lu, Rong Yu, Liquan Chen, Yong‐sheng Hu","doi":"10.1002/adma.202509032","DOIUrl":null,"url":null,"abstract":"Unstable high‐capacity cathodes remain a substantial barrier to enhancing the energy density of Na‐ion batteries (NIBs). While the high‐entropy strategy has demonstrated significant advantages in improving the performance of layered oxide cathodes, the specific capacities of reported high‐entropy oxides remain relatively low (&lt;150 mAh g<jats:sup>−1</jats:sup>). This prompts a reconsideration toward leveraging not just high entropy, but also the synergy among multiple elements to meet the demands for higher energy density. Herein, a multi‐element composition modulation strategy is proposed to obtain cathodes without compromising on capacity, exemplified by LFANMT (NaLi<jats:sub>0.05</jats:sub>Fe<jats:sub>0.04</jats:sub>Al<jats:sub>0.01</jats:sub>Ni<jats:sub>0.4</jats:sub>Mn<jats:sub>0.4</jats:sub>Ti<jats:sub>0.1</jats:sub>O<jats:sub>2</jats:sub>), which achieves a remarkable specific capacity exceeding 180 mAh g<jats:sup>−1</jats:sup> at 4.3 V. It is visualized that single‐crystal particles with surface compressive stress and bulk tensile stress exhibit superior surface lattice oxygen stability and crack resistance during cycling. Constructing an initial stress‐protective layer is beneficial for alleviating the internal and external stress differences caused by uneven Na<jats:sup>+</jats:sup> extraction during the O3‐P3 phase transition. Through precise elemental modulation, cathodes exhibiting excellent cycling stability with negligible voltage decay under high voltage are successfully obtained. The work provides an effective approach for designing high‐capacity O3‐type layered oxides for NIBs, emphasizing the importance of synergistic effects among elements.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"34 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi‐Element Composition Modulation Strategy for Designing High‐Capacity and Stable O3‐Type Na‐Layered Oxide\",\"authors\":\"Xubin Wang, Wenfeng Yang, Yang Yang, Jiao Zhang, Hao Guo, Bowen Wang, Yaxiang Lu, Rong Yu, Liquan Chen, Yong‐sheng Hu\",\"doi\":\"10.1002/adma.202509032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unstable high‐capacity cathodes remain a substantial barrier to enhancing the energy density of Na‐ion batteries (NIBs). While the high‐entropy strategy has demonstrated significant advantages in improving the performance of layered oxide cathodes, the specific capacities of reported high‐entropy oxides remain relatively low (&lt;150 mAh g<jats:sup>−1</jats:sup>). This prompts a reconsideration toward leveraging not just high entropy, but also the synergy among multiple elements to meet the demands for higher energy density. Herein, a multi‐element composition modulation strategy is proposed to obtain cathodes without compromising on capacity, exemplified by LFANMT (NaLi<jats:sub>0.05</jats:sub>Fe<jats:sub>0.04</jats:sub>Al<jats:sub>0.01</jats:sub>Ni<jats:sub>0.4</jats:sub>Mn<jats:sub>0.4</jats:sub>Ti<jats:sub>0.1</jats:sub>O<jats:sub>2</jats:sub>), which achieves a remarkable specific capacity exceeding 180 mAh g<jats:sup>−1</jats:sup> at 4.3 V. It is visualized that single‐crystal particles with surface compressive stress and bulk tensile stress exhibit superior surface lattice oxygen stability and crack resistance during cycling. Constructing an initial stress‐protective layer is beneficial for alleviating the internal and external stress differences caused by uneven Na<jats:sup>+</jats:sup> extraction during the O3‐P3 phase transition. Through precise elemental modulation, cathodes exhibiting excellent cycling stability with negligible voltage decay under high voltage are successfully obtained. The work provides an effective approach for designing high‐capacity O3‐type layered oxides for NIBs, emphasizing the importance of synergistic effects among elements.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202509032\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202509032","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

不稳定的高容量阴极仍然是提高钠离子电池(nib)能量密度的实质性障碍。虽然高熵策略在提高层状氧化物阴极性能方面具有显着优势,但报道的高熵氧化物的比容量仍然相对较低(<150 mAh g - 1)。这促使人们重新考虑不仅要利用高熵,还要利用多个元素之间的协同作用来满足更高能量密度的需求。本文提出了一种多元素组成调制策略,以获得不影响容量的阴极,例如LFANMT (NaLi0.05Fe0.04Al0.01Ni0.4Mn0.4Ti0.1O2),在4.3 V下实现了超过180 mAh g−1的显着比容量。可见,具有表面压应力和体拉应力的单晶颗粒在循环过程中表现出优异的表面晶格氧稳定性和抗裂性。构建初始应力保护层有利于缓解O3 - P3相变过程中Na+的不均匀提取引起的内外应力差异。通过精确的元素调制,成功地获得了高电压下具有良好循环稳定性和可忽略电压衰减的阴极。这项工作为nib的高容量O3型层状氧化物的设计提供了有效的方法,强调了元素之间协同效应的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi‐Element Composition Modulation Strategy for Designing High‐Capacity and Stable O3‐Type Na‐Layered Oxide
Unstable high‐capacity cathodes remain a substantial barrier to enhancing the energy density of Na‐ion batteries (NIBs). While the high‐entropy strategy has demonstrated significant advantages in improving the performance of layered oxide cathodes, the specific capacities of reported high‐entropy oxides remain relatively low (<150 mAh g−1). This prompts a reconsideration toward leveraging not just high entropy, but also the synergy among multiple elements to meet the demands for higher energy density. Herein, a multi‐element composition modulation strategy is proposed to obtain cathodes without compromising on capacity, exemplified by LFANMT (NaLi0.05Fe0.04Al0.01Ni0.4Mn0.4Ti0.1O2), which achieves a remarkable specific capacity exceeding 180 mAh g−1 at 4.3 V. It is visualized that single‐crystal particles with surface compressive stress and bulk tensile stress exhibit superior surface lattice oxygen stability and crack resistance during cycling. Constructing an initial stress‐protective layer is beneficial for alleviating the internal and external stress differences caused by uneven Na+ extraction during the O3‐P3 phase transition. Through precise elemental modulation, cathodes exhibiting excellent cycling stability with negligible voltage decay under high voltage are successfully obtained. The work provides an effective approach for designing high‐capacity O3‐type layered oxides for NIBs, emphasizing the importance of synergistic effects among elements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信