人类胎儿肾类器官模型早期人类肾形成和notch驱动的细胞命运。

Michael Namestnikov,Osnat Cohen-Zontag,Dorit Omer,Yehudit Gnatek,Sanja Goldberg,Thomas Vincent,Swati Singh,Yair Shiber,Tal Rafaeli Yehudai,Hadas Volkov,Dani Folkman Genet,Achia Urbach,Sylvie Polak-Charcon,Igor Grinberg,Naomi Pode-Shakked,Boaz Weisz,Zvi Vaknin,Benjamin S Freedman,Benjamin Dekel
{"title":"人类胎儿肾类器官模型早期人类肾形成和notch驱动的细胞命运。","authors":"Michael Namestnikov,Osnat Cohen-Zontag,Dorit Omer,Yehudit Gnatek,Sanja Goldberg,Thomas Vincent,Swati Singh,Yair Shiber,Tal Rafaeli Yehudai,Hadas Volkov,Dani Folkman Genet,Achia Urbach,Sylvie Polak-Charcon,Igor Grinberg,Naomi Pode-Shakked,Boaz Weisz,Zvi Vaknin,Benjamin S Freedman,Benjamin Dekel","doi":"10.1038/s44318-025-00504-2","DOIUrl":null,"url":null,"abstract":"Pluripotent stem cell (PSC)-derived kidney organoids are used to model human renal development and disease; however, accessible models of human fetal development to benchmark PSC-derived organoids remain underdeveloped. Here, we establish a chemically defined, serum-free protocol for prolonged culture of human fetal kidney-derived organoids (hFKOs) in vitro. hFKOs self-organize into polarized renal epithelium, reinitiate from NCAM1+ progenitors, and recapitulate nephrogenic and ureteric bud lineages. Bulk transcriptomics, single-cell RNA sequencing, pseudotime analysis, and immunostaining revealed diverse renal tissue cell populations, with a preserved epithelial progenitor pool and tubular differentiation axis. hFKOs were enriched for Notch signaling genes, enabling single-cell analysis of pharmacological Notch inhibition. This revealed a maturation block with increased nephron progenitors and a shift toward distal over early proximal tubule fates. We also identified a novel prominin-1-expressing cell state that evades Notch inhibition to generate both proximal and distal tubules. Overall, hFKOs provide a faithful model to gain insights into human kidney development, advancing the fields of stem cell biology and regenerative medicine.","PeriodicalId":501009,"journal":{"name":"The EMBO Journal","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human fetal kidney organoids model early human nephrogenesis and Notch-driven cell fate.\",\"authors\":\"Michael Namestnikov,Osnat Cohen-Zontag,Dorit Omer,Yehudit Gnatek,Sanja Goldberg,Thomas Vincent,Swati Singh,Yair Shiber,Tal Rafaeli Yehudai,Hadas Volkov,Dani Folkman Genet,Achia Urbach,Sylvie Polak-Charcon,Igor Grinberg,Naomi Pode-Shakked,Boaz Weisz,Zvi Vaknin,Benjamin S Freedman,Benjamin Dekel\",\"doi\":\"10.1038/s44318-025-00504-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pluripotent stem cell (PSC)-derived kidney organoids are used to model human renal development and disease; however, accessible models of human fetal development to benchmark PSC-derived organoids remain underdeveloped. Here, we establish a chemically defined, serum-free protocol for prolonged culture of human fetal kidney-derived organoids (hFKOs) in vitro. hFKOs self-organize into polarized renal epithelium, reinitiate from NCAM1+ progenitors, and recapitulate nephrogenic and ureteric bud lineages. Bulk transcriptomics, single-cell RNA sequencing, pseudotime analysis, and immunostaining revealed diverse renal tissue cell populations, with a preserved epithelial progenitor pool and tubular differentiation axis. hFKOs were enriched for Notch signaling genes, enabling single-cell analysis of pharmacological Notch inhibition. This revealed a maturation block with increased nephron progenitors and a shift toward distal over early proximal tubule fates. We also identified a novel prominin-1-expressing cell state that evades Notch inhibition to generate both proximal and distal tubules. Overall, hFKOs provide a faithful model to gain insights into human kidney development, advancing the fields of stem cell biology and regenerative medicine.\",\"PeriodicalId\":501009,\"journal\":{\"name\":\"The EMBO Journal\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The EMBO Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44318-025-00504-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The EMBO Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44318-025-00504-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多能干细胞(PSC)衍生的肾类器官用于模拟人类肾脏发育和疾病;然而,可获得的人类胎儿发育模型以psc衍生的类器官为基准仍然不发达。在这里,我们建立了一种化学定义的、无血清的体外培养人胎儿肾源性类器官(hfko)的方案。hfko自组织成极化肾上皮,从NCAM1+祖细胞重新启动,并概括肾源性和输尿管芽系。大量转录组学、单细胞RNA测序、伪时间分析和免疫染色显示了不同的肾组织细胞群,保存了上皮祖细胞池和小管分化轴。富含Notch信号基因的hfko能够单细胞分析Notch抑制的药理作用。这揭示了成熟阻滞与肾元祖细胞增加和向远端转移而不是早期近端小管命运。我们还发现了一种新的表达突起蛋白1的细胞状态,它可以避开Notch抑制产生近端和远端小管。总的来说,hfko为深入了解人类肾脏发育提供了一个可靠的模型,推动了干细胞生物学和再生医学领域的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human fetal kidney organoids model early human nephrogenesis and Notch-driven cell fate.
Pluripotent stem cell (PSC)-derived kidney organoids are used to model human renal development and disease; however, accessible models of human fetal development to benchmark PSC-derived organoids remain underdeveloped. Here, we establish a chemically defined, serum-free protocol for prolonged culture of human fetal kidney-derived organoids (hFKOs) in vitro. hFKOs self-organize into polarized renal epithelium, reinitiate from NCAM1+ progenitors, and recapitulate nephrogenic and ureteric bud lineages. Bulk transcriptomics, single-cell RNA sequencing, pseudotime analysis, and immunostaining revealed diverse renal tissue cell populations, with a preserved epithelial progenitor pool and tubular differentiation axis. hFKOs were enriched for Notch signaling genes, enabling single-cell analysis of pharmacological Notch inhibition. This revealed a maturation block with increased nephron progenitors and a shift toward distal over early proximal tubule fates. We also identified a novel prominin-1-expressing cell state that evades Notch inhibition to generate both proximal and distal tubules. Overall, hFKOs provide a faithful model to gain insights into human kidney development, advancing the fields of stem cell biology and regenerative medicine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信