{"title":"人类胎儿肾类器官模型早期人类肾形成和notch驱动的细胞命运。","authors":"Michael Namestnikov,Osnat Cohen-Zontag,Dorit Omer,Yehudit Gnatek,Sanja Goldberg,Thomas Vincent,Swati Singh,Yair Shiber,Tal Rafaeli Yehudai,Hadas Volkov,Dani Folkman Genet,Achia Urbach,Sylvie Polak-Charcon,Igor Grinberg,Naomi Pode-Shakked,Boaz Weisz,Zvi Vaknin,Benjamin S Freedman,Benjamin Dekel","doi":"10.1038/s44318-025-00504-2","DOIUrl":null,"url":null,"abstract":"Pluripotent stem cell (PSC)-derived kidney organoids are used to model human renal development and disease; however, accessible models of human fetal development to benchmark PSC-derived organoids remain underdeveloped. Here, we establish a chemically defined, serum-free protocol for prolonged culture of human fetal kidney-derived organoids (hFKOs) in vitro. hFKOs self-organize into polarized renal epithelium, reinitiate from NCAM1+ progenitors, and recapitulate nephrogenic and ureteric bud lineages. Bulk transcriptomics, single-cell RNA sequencing, pseudotime analysis, and immunostaining revealed diverse renal tissue cell populations, with a preserved epithelial progenitor pool and tubular differentiation axis. hFKOs were enriched for Notch signaling genes, enabling single-cell analysis of pharmacological Notch inhibition. This revealed a maturation block with increased nephron progenitors and a shift toward distal over early proximal tubule fates. We also identified a novel prominin-1-expressing cell state that evades Notch inhibition to generate both proximal and distal tubules. Overall, hFKOs provide a faithful model to gain insights into human kidney development, advancing the fields of stem cell biology and regenerative medicine.","PeriodicalId":501009,"journal":{"name":"The EMBO Journal","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human fetal kidney organoids model early human nephrogenesis and Notch-driven cell fate.\",\"authors\":\"Michael Namestnikov,Osnat Cohen-Zontag,Dorit Omer,Yehudit Gnatek,Sanja Goldberg,Thomas Vincent,Swati Singh,Yair Shiber,Tal Rafaeli Yehudai,Hadas Volkov,Dani Folkman Genet,Achia Urbach,Sylvie Polak-Charcon,Igor Grinberg,Naomi Pode-Shakked,Boaz Weisz,Zvi Vaknin,Benjamin S Freedman,Benjamin Dekel\",\"doi\":\"10.1038/s44318-025-00504-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pluripotent stem cell (PSC)-derived kidney organoids are used to model human renal development and disease; however, accessible models of human fetal development to benchmark PSC-derived organoids remain underdeveloped. Here, we establish a chemically defined, serum-free protocol for prolonged culture of human fetal kidney-derived organoids (hFKOs) in vitro. hFKOs self-organize into polarized renal epithelium, reinitiate from NCAM1+ progenitors, and recapitulate nephrogenic and ureteric bud lineages. Bulk transcriptomics, single-cell RNA sequencing, pseudotime analysis, and immunostaining revealed diverse renal tissue cell populations, with a preserved epithelial progenitor pool and tubular differentiation axis. hFKOs were enriched for Notch signaling genes, enabling single-cell analysis of pharmacological Notch inhibition. This revealed a maturation block with increased nephron progenitors and a shift toward distal over early proximal tubule fates. We also identified a novel prominin-1-expressing cell state that evades Notch inhibition to generate both proximal and distal tubules. Overall, hFKOs provide a faithful model to gain insights into human kidney development, advancing the fields of stem cell biology and regenerative medicine.\",\"PeriodicalId\":501009,\"journal\":{\"name\":\"The EMBO Journal\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The EMBO Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44318-025-00504-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The EMBO Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44318-025-00504-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Human fetal kidney organoids model early human nephrogenesis and Notch-driven cell fate.
Pluripotent stem cell (PSC)-derived kidney organoids are used to model human renal development and disease; however, accessible models of human fetal development to benchmark PSC-derived organoids remain underdeveloped. Here, we establish a chemically defined, serum-free protocol for prolonged culture of human fetal kidney-derived organoids (hFKOs) in vitro. hFKOs self-organize into polarized renal epithelium, reinitiate from NCAM1+ progenitors, and recapitulate nephrogenic and ureteric bud lineages. Bulk transcriptomics, single-cell RNA sequencing, pseudotime analysis, and immunostaining revealed diverse renal tissue cell populations, with a preserved epithelial progenitor pool and tubular differentiation axis. hFKOs were enriched for Notch signaling genes, enabling single-cell analysis of pharmacological Notch inhibition. This revealed a maturation block with increased nephron progenitors and a shift toward distal over early proximal tubule fates. We also identified a novel prominin-1-expressing cell state that evades Notch inhibition to generate both proximal and distal tubules. Overall, hFKOs provide a faithful model to gain insights into human kidney development, advancing the fields of stem cell biology and regenerative medicine.