{"title":"变形尖形和大筛子","authors":"Alexander Dunn","doi":"10.2140/ant.2025.19.1823","DOIUrl":null,"url":null,"abstract":"<p>We prove a power saving upper bound for the sum of Fourier coefficients <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ρ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo stretchy=\"false\">(</mo><mo>⋅</mo><mo stretchy=\"false\">)</mo></math> of a fixed cubic metaplectic cusp form <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi></math> over primes. Our result is the cubic analogue of a celebrated 1990 theorem of Duke and Iwaniec, and the cuspidal analogue of a theorem due to the author and Radziwiłł for the bias in cubic Gauss sums. </p><p> The proof has two main inputs, both of independent interest. Firstly, we prove a new large sieve estimate for a bilinear form whose kernel function is <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ρ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo stretchy=\"false\">(</mo><mo>⋅</mo><mo stretchy=\"false\">)</mo></math>. The proof of the bilinear estimate uses a number field version of circle method due to Browning and Vishe, Voronoi summation, and Gauss–Ramanujan sums. Secondly, we use Voronoi summation and the cubic large sieve of Heath-Brown to prove an estimate for a linear form involving <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ρ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo stretchy=\"false\">(</mo><mo>⋅</mo><mo stretchy=\"false\">)</mo></math>. Our linear estimate overcomes a bottleneck occurring at level of distribution <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>2</mn></mrow>\n<mrow><mn>3</mn></mrow></mfrac></math>. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"17 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metaplectic cusp forms and the large sieve\",\"authors\":\"Alexander Dunn\",\"doi\":\"10.2140/ant.2025.19.1823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove a power saving upper bound for the sum of Fourier coefficients <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>ρ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mo>⋅</mo><mo stretchy=\\\"false\\\">)</mo></math> of a fixed cubic metaplectic cusp form <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>f</mi></math> over primes. Our result is the cubic analogue of a celebrated 1990 theorem of Duke and Iwaniec, and the cuspidal analogue of a theorem due to the author and Radziwiłł for the bias in cubic Gauss sums. </p><p> The proof has two main inputs, both of independent interest. Firstly, we prove a new large sieve estimate for a bilinear form whose kernel function is <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>ρ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mo>⋅</mo><mo stretchy=\\\"false\\\">)</mo></math>. The proof of the bilinear estimate uses a number field version of circle method due to Browning and Vishe, Voronoi summation, and Gauss–Ramanujan sums. Secondly, we use Voronoi summation and the cubic large sieve of Heath-Brown to prove an estimate for a linear form involving <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>ρ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mo>⋅</mo><mo stretchy=\\\"false\\\">)</mo></math>. Our linear estimate overcomes a bottleneck occurring at level of distribution <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mfrac><mrow><mn>2</mn></mrow>\\n<mrow><mn>3</mn></mrow></mfrac></math>. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2025.19.1823\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.1823","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We prove a power saving upper bound for the sum of Fourier coefficients of a fixed cubic metaplectic cusp form over primes. Our result is the cubic analogue of a celebrated 1990 theorem of Duke and Iwaniec, and the cuspidal analogue of a theorem due to the author and Radziwiłł for the bias in cubic Gauss sums.
The proof has two main inputs, both of independent interest. Firstly, we prove a new large sieve estimate for a bilinear form whose kernel function is . The proof of the bilinear estimate uses a number field version of circle method due to Browning and Vishe, Voronoi summation, and Gauss–Ramanujan sums. Secondly, we use Voronoi summation and the cubic large sieve of Heath-Brown to prove an estimate for a linear form involving . Our linear estimate overcomes a bottleneck occurring at level of distribution .
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.