{"title":"𝒳0(N)上的算术Siegel-Weil公式","authors":"Baiqing Zhu","doi":"10.2140/ant.2025.19.1771","DOIUrl":null,"url":null,"abstract":"<p>We establish the arithmetic Siegel–Weil formula on the modular curve <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">𝒳</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>N</mi><mo stretchy=\"false\">)</mo></math> for arbitrary level <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi></math>, i.e., we relate the arithmetic degrees of special cycles on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">𝒳</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>N</mi><mo stretchy=\"false\">)</mo></math> to the derivatives of Fourier coefficients of a genus-2 Eisenstein series. We prove this formula by a precise identity between the local arithmetic intersection numbers on the Rapoport–Zink space associated to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">𝒳</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>N</mi><mo stretchy=\"false\">)</mo></math> and the derivatives of local representation densities of quadratic forms. When <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi></math> is odd and square-free, this gives a different proof of the main results in work of Sankaran, Shi and Yang. This local identity is proved by relating it to an identity in one dimension higher, but at hyperspecial level. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arithmetic Siegel–Weil formula on 𝒳0(N)\",\"authors\":\"Baiqing Zhu\",\"doi\":\"10.2140/ant.2025.19.1771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We establish the arithmetic Siegel–Weil formula on the modular curve <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi mathvariant=\\\"bold-script\\\">𝒳</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>N</mi><mo stretchy=\\\"false\\\">)</mo></math> for arbitrary level <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>N</mi></math>, i.e., we relate the arithmetic degrees of special cycles on <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi mathvariant=\\\"bold-script\\\">𝒳</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>N</mi><mo stretchy=\\\"false\\\">)</mo></math> to the derivatives of Fourier coefficients of a genus-2 Eisenstein series. We prove this formula by a precise identity between the local arithmetic intersection numbers on the Rapoport–Zink space associated to <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi mathvariant=\\\"bold-script\\\">𝒳</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>N</mi><mo stretchy=\\\"false\\\">)</mo></math> and the derivatives of local representation densities of quadratic forms. When <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>N</mi></math> is odd and square-free, this gives a different proof of the main results in work of Sankaran, Shi and Yang. This local identity is proved by relating it to an identity in one dimension higher, but at hyperspecial level. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2025.19.1771\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.1771","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We establish the arithmetic Siegel–Weil formula on the modular curve for arbitrary level , i.e., we relate the arithmetic degrees of special cycles on to the derivatives of Fourier coefficients of a genus-2 Eisenstein series. We prove this formula by a precise identity between the local arithmetic intersection numbers on the Rapoport–Zink space associated to and the derivatives of local representation densities of quadratic forms. When is odd and square-free, this gives a different proof of the main results in work of Sankaran, Shi and Yang. This local identity is proved by relating it to an identity in one dimension higher, but at hyperspecial level.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.