钒基配合物介导的分子工程实现了锂硫化学的均匀调制

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-07-22 DOI:10.1002/smll.202502934
Meng Wang, Haoji Xiao, Man Yang, Yunfeng Zhang, Qin Yang, Shiying Shen, Lixian Song, Qingchun Zhang, Yingze Song
{"title":"钒基配合物介导的分子工程实现了锂硫化学的均匀调制","authors":"Meng Wang,&nbsp;Haoji Xiao,&nbsp;Man Yang,&nbsp;Yunfeng Zhang,&nbsp;Qin Yang,&nbsp;Shiying Shen,&nbsp;Lixian Song,&nbsp;Qingchun Zhang,&nbsp;Yingze Song","doi":"10.1002/smll.202502934","DOIUrl":null,"url":null,"abstract":"<p>The large-scale commercial application of lithium-sulfur batteries (LSBs) is hindered by several critical challenges, including severe lithium polysulfide shuttling, sluggish kinetics of sulfur redox reactions, and unstable lithium anode surface. These issues significantly restrict the discharge capacity, cycling life, and safety of LSBs. Herein, the vanadyl acetylacetonate (VO) complex, characterized by a high donor number, is used as an effective homogeneous catalyst to address these cross-cutting problems. Concurrently, a functionalized separator modified with <i>N,N’</i>-di(propanoic acid)-perylene-3,4,9,10-tetracarboxylic diimide (PDI) is employed to prevent the migration of VO molecules from the cathode to the anode side. The applied VO complex in the electrolyte provides completely active sites and ensures sufficient interfacial contact for homogeneously guiding the Li<sub>2</sub>S nucleation/decomposition reactions, while optimizing the lithium anode interface. By integrating 0.1 wt.% VO complex into the electrolyte and PDI-based separator, the homogenous catalyic function of the VO catalyst is effectively pledged. As a result, the LSBs demonstrate favorable performance, achieving a capacity retention of 97.1% at 0.5 C after 100 cycles and a stable cycling at 3.0 C over 800 cycles.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 36","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vanadyl Complex-Mediated Molecular Engineering Enables Homogeneous Modulation of Lithium–Sulfur Chemistry\",\"authors\":\"Meng Wang,&nbsp;Haoji Xiao,&nbsp;Man Yang,&nbsp;Yunfeng Zhang,&nbsp;Qin Yang,&nbsp;Shiying Shen,&nbsp;Lixian Song,&nbsp;Qingchun Zhang,&nbsp;Yingze Song\",\"doi\":\"10.1002/smll.202502934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The large-scale commercial application of lithium-sulfur batteries (LSBs) is hindered by several critical challenges, including severe lithium polysulfide shuttling, sluggish kinetics of sulfur redox reactions, and unstable lithium anode surface. These issues significantly restrict the discharge capacity, cycling life, and safety of LSBs. Herein, the vanadyl acetylacetonate (VO) complex, characterized by a high donor number, is used as an effective homogeneous catalyst to address these cross-cutting problems. Concurrently, a functionalized separator modified with <i>N,N’</i>-di(propanoic acid)-perylene-3,4,9,10-tetracarboxylic diimide (PDI) is employed to prevent the migration of VO molecules from the cathode to the anode side. The applied VO complex in the electrolyte provides completely active sites and ensures sufficient interfacial contact for homogeneously guiding the Li<sub>2</sub>S nucleation/decomposition reactions, while optimizing the lithium anode interface. By integrating 0.1 wt.% VO complex into the electrolyte and PDI-based separator, the homogenous catalyic function of the VO catalyst is effectively pledged. As a result, the LSBs demonstrate favorable performance, achieving a capacity retention of 97.1% at 0.5 C after 100 cycles and a stable cycling at 3.0 C over 800 cycles.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 36\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202502934\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202502934","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锂硫电池(LSBs)的大规模商业应用受到几个关键挑战的阻碍,包括严重的多硫化锂穿梭,硫氧化还原反应的缓慢动力学以及锂阳极表面不稳定。这些问题严重限制了lsb的放电容量、循环寿命和安全性。本文中,乙酰丙酮钒(VO)配合物具有高供体数的特点,被用作有效的均相催化剂来解决这些交叉切割问题。同时,采用N,N′-二(丙酸)-苝- 3,4,9,10 -四羧基二亚胺(PDI)修饰的功能化分离器来防止VO分子从阴极向阳极迁移。电解质中的VO配合物提供了完全的活性位点,并保证了足够的界面接触,以均匀地指导Li2S成核/分解反应,同时优化了锂阳极界面。通过将0.1 wt.%的VO配合物整合到电解液和PDI基分离器中,有效地保证了VO催化剂的均相催化功能。结果表明,lbs具有良好的性能,在0.5℃下循环100次后,容量保持率达到97.1%,在3.0℃下循环800次后,容量保持稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vanadyl Complex-Mediated Molecular Engineering Enables Homogeneous Modulation of Lithium–Sulfur Chemistry

The large-scale commercial application of lithium-sulfur batteries (LSBs) is hindered by several critical challenges, including severe lithium polysulfide shuttling, sluggish kinetics of sulfur redox reactions, and unstable lithium anode surface. These issues significantly restrict the discharge capacity, cycling life, and safety of LSBs. Herein, the vanadyl acetylacetonate (VO) complex, characterized by a high donor number, is used as an effective homogeneous catalyst to address these cross-cutting problems. Concurrently, a functionalized separator modified with N,N’-di(propanoic acid)-perylene-3,4,9,10-tetracarboxylic diimide (PDI) is employed to prevent the migration of VO molecules from the cathode to the anode side. The applied VO complex in the electrolyte provides completely active sites and ensures sufficient interfacial contact for homogeneously guiding the Li2S nucleation/decomposition reactions, while optimizing the lithium anode interface. By integrating 0.1 wt.% VO complex into the electrolyte and PDI-based separator, the homogenous catalyic function of the VO catalyst is effectively pledged. As a result, the LSBs demonstrate favorable performance, achieving a capacity retention of 97.1% at 0.5 C after 100 cycles and a stable cycling at 3.0 C over 800 cycles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信