{"title":"促进热扩散和抑制铅泄漏的环保柔性钙钛矿太阳能电池","authors":"Jinxian Yang, Jinpei Wang, Yingjie Xie, Hui Xu, Meiru Duan, Tai Li, Junlin Wen, Chen Zhang, Yingdong Xia, Hui Zhang, Yonghua Chen","doi":"10.1002/aenm.202501673","DOIUrl":null,"url":null,"abstract":"Flexible perovskite solar cells (f‐PSCs) have manifested promising applications in wearable electronics, whereas their practical deployments are seriously restricted by inhomogeneous perovskite crystallization on soft substrates, poor mechanical endurance at grain boundaries, and potential exposure of toxic lead ions. Here, durable f‐PSCs is reported by incorporating a new type of nanocomposites of polyacrylic acid grafted graphene oxide (GO‐PAA). It is revealed that the perovskite crystallization is initiated from the surface of GO‐PAA on account of their exceptionally high thermal diffusivity and strong association with perovskite components. This allows the formation of uniform perovskite crystals with suppressed lattice strain and strengthened trans‐grain interconnection. Owing to the excellent mechanical properties, the presence of GO‐PAA within the perovskite grains reduced the Young's modulus and boosted the mechanical resistance against cyclic bending of the perovskite thin films. Moreover, the incorporated nanocomposites can prevent lead leakage from the f‐PSCs because of the increased energetic barrier for water permeation and effective adsorption of leaked Pb<jats:sup>2+</jats:sup> by GO‐PAA, effectively preventing environmental pollution in case of accidental damage during practical application. As a result, environmentally friendly f‐PSCs with a champion efficiency up to 24.2%, a power‐to‐weight ratio of 1.436 W g<jats:sup>−1</jats:sup>, and remarkable mechanical stability are ultimately achieved.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"21 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmentally Friendly Flexible Perovskite Solar Cells with Promoted Thermal Diffusivity and Suppressed Lead Leakage\",\"authors\":\"Jinxian Yang, Jinpei Wang, Yingjie Xie, Hui Xu, Meiru Duan, Tai Li, Junlin Wen, Chen Zhang, Yingdong Xia, Hui Zhang, Yonghua Chen\",\"doi\":\"10.1002/aenm.202501673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flexible perovskite solar cells (f‐PSCs) have manifested promising applications in wearable electronics, whereas their practical deployments are seriously restricted by inhomogeneous perovskite crystallization on soft substrates, poor mechanical endurance at grain boundaries, and potential exposure of toxic lead ions. Here, durable f‐PSCs is reported by incorporating a new type of nanocomposites of polyacrylic acid grafted graphene oxide (GO‐PAA). It is revealed that the perovskite crystallization is initiated from the surface of GO‐PAA on account of their exceptionally high thermal diffusivity and strong association with perovskite components. This allows the formation of uniform perovskite crystals with suppressed lattice strain and strengthened trans‐grain interconnection. Owing to the excellent mechanical properties, the presence of GO‐PAA within the perovskite grains reduced the Young's modulus and boosted the mechanical resistance against cyclic bending of the perovskite thin films. Moreover, the incorporated nanocomposites can prevent lead leakage from the f‐PSCs because of the increased energetic barrier for water permeation and effective adsorption of leaked Pb<jats:sup>2+</jats:sup> by GO‐PAA, effectively preventing environmental pollution in case of accidental damage during practical application. As a result, environmentally friendly f‐PSCs with a champion efficiency up to 24.2%, a power‐to‐weight ratio of 1.436 W g<jats:sup>−1</jats:sup>, and remarkable mechanical stability are ultimately achieved.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202501673\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202501673","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Environmentally Friendly Flexible Perovskite Solar Cells with Promoted Thermal Diffusivity and Suppressed Lead Leakage
Flexible perovskite solar cells (f‐PSCs) have manifested promising applications in wearable electronics, whereas their practical deployments are seriously restricted by inhomogeneous perovskite crystallization on soft substrates, poor mechanical endurance at grain boundaries, and potential exposure of toxic lead ions. Here, durable f‐PSCs is reported by incorporating a new type of nanocomposites of polyacrylic acid grafted graphene oxide (GO‐PAA). It is revealed that the perovskite crystallization is initiated from the surface of GO‐PAA on account of their exceptionally high thermal diffusivity and strong association with perovskite components. This allows the formation of uniform perovskite crystals with suppressed lattice strain and strengthened trans‐grain interconnection. Owing to the excellent mechanical properties, the presence of GO‐PAA within the perovskite grains reduced the Young's modulus and boosted the mechanical resistance against cyclic bending of the perovskite thin films. Moreover, the incorporated nanocomposites can prevent lead leakage from the f‐PSCs because of the increased energetic barrier for water permeation and effective adsorption of leaked Pb2+ by GO‐PAA, effectively preventing environmental pollution in case of accidental damage during practical application. As a result, environmentally friendly f‐PSCs with a champion efficiency up to 24.2%, a power‐to‐weight ratio of 1.436 W g−1, and remarkable mechanical stability are ultimately achieved.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.