Can Cui, Katherine Emma Lonergan, Giovanni Sansavini
{"title":"全球太阳能光伏供应链的政策驱动转型及其影响","authors":"Can Cui, Katherine Emma Lonergan, Giovanni Sansavini","doi":"10.1038/s41467-025-61979-5","DOIUrl":null,"url":null,"abstract":"<p>Tripling renewable energy capacity by 2030 requires increasing technology production capacity, including solar photovoltaics (PV). Current supply chains rely heavily on Chinese production; however, this situation is not aligned with regions aiming to increase self-sufficiency, decrease supply chain emissions, and increase local job opportunities. Here, we apply a supply chain optimization model to perform scenario analysis of the PV supply chain development through 2021-2030 considering various European economic and job creation goals. Irrespective of regional goals, we find that China is poised to remain a globally dominant supplier through 2030, especially in terms of lower-value PV components, given that future demand requires increasing global production capacity by a factor of at least 1.5. We find that some regional supply chain goals can be co-beneficial, for example in terms of joint job gains and increased regional self-sufficiency. However, pursuing highly isolationist policies can introduce cost-significant inefficiencies. Our results highlight that an open trade policy is key to minimizing costs, even when considering security and environmental supply chain objectives.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"14 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Policy-driven transformation of global solar PV supply chains and resulting impacts\",\"authors\":\"Can Cui, Katherine Emma Lonergan, Giovanni Sansavini\",\"doi\":\"10.1038/s41467-025-61979-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tripling renewable energy capacity by 2030 requires increasing technology production capacity, including solar photovoltaics (PV). Current supply chains rely heavily on Chinese production; however, this situation is not aligned with regions aiming to increase self-sufficiency, decrease supply chain emissions, and increase local job opportunities. Here, we apply a supply chain optimization model to perform scenario analysis of the PV supply chain development through 2021-2030 considering various European economic and job creation goals. Irrespective of regional goals, we find that China is poised to remain a globally dominant supplier through 2030, especially in terms of lower-value PV components, given that future demand requires increasing global production capacity by a factor of at least 1.5. We find that some regional supply chain goals can be co-beneficial, for example in terms of joint job gains and increased regional self-sufficiency. However, pursuing highly isolationist policies can introduce cost-significant inefficiencies. Our results highlight that an open trade policy is key to minimizing costs, even when considering security and environmental supply chain objectives.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61979-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61979-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Policy-driven transformation of global solar PV supply chains and resulting impacts
Tripling renewable energy capacity by 2030 requires increasing technology production capacity, including solar photovoltaics (PV). Current supply chains rely heavily on Chinese production; however, this situation is not aligned with regions aiming to increase self-sufficiency, decrease supply chain emissions, and increase local job opportunities. Here, we apply a supply chain optimization model to perform scenario analysis of the PV supply chain development through 2021-2030 considering various European economic and job creation goals. Irrespective of regional goals, we find that China is poised to remain a globally dominant supplier through 2030, especially in terms of lower-value PV components, given that future demand requires increasing global production capacity by a factor of at least 1.5. We find that some regional supply chain goals can be co-beneficial, for example in terms of joint job gains and increased regional self-sufficiency. However, pursuing highly isolationist policies can introduce cost-significant inefficiencies. Our results highlight that an open trade policy is key to minimizing costs, even when considering security and environmental supply chain objectives.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.