Jeong Seon Kim, Zhenhang Chen, Sara Andrea Espinosa Garcia, Christoph Buhlheller, Botao Zhang, Stephen J. Richards, Tingfei Chen, Jingjing Wu, Ronald C. Bruntz, Marisa E. Gilliam, Mitsuo Yamauchi, Bo Liang, Houfu Guo
{"title":"胶原糖基转移酶功能的结构基础及其在曲二糖合成中的偶然作用","authors":"Jeong Seon Kim, Zhenhang Chen, Sara Andrea Espinosa Garcia, Christoph Buhlheller, Botao Zhang, Stephen J. Richards, Tingfei Chen, Jingjing Wu, Ronald C. Bruntz, Marisa E. Gilliam, Mitsuo Yamauchi, Bo Liang, Houfu Guo","doi":"10.1038/s41467-025-61973-x","DOIUrl":null,"url":null,"abstract":"<p>Collagen glucosyltransferases catalyze collagen glucosylation critical for biology and diseases, yet their structural regulation remains unclear. Here, we report crystal structures of a mimiviral collagen glucosyltransferase in its apo form and in complexes with uridine diphosphate (UDP) and the disaccharide product. We reveal that the enzyme forms a homodimer, stabilized by a loop from one subunit locking into a cleft on the other, enabling UDP-glucose binding cooperativity and enzymatic activity, a property conserved in the human homolog. The structures support an induced fit model for UDP interaction. The dimerization also forms an extended cleft flanked by two active sites, likely facilitating collagen recognition. Unexpectedly, the mimiviral enzyme also synthesizes a prebiotic disaccharide kojibiose. An elongated pocket near the active site allows the enzyme to use UDP-glucose and glucose for kojibiose production. We confirm the enzyme’s kojibiose synthesis activity in vitro and in vivo. These insights inform glucosyltransferase function and open new avenues for inhibitor development and kojibiose biosynthesis.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"17 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural basis of collagen glucosyltransferase function and its serendipitous role in kojibiose synthesis\",\"authors\":\"Jeong Seon Kim, Zhenhang Chen, Sara Andrea Espinosa Garcia, Christoph Buhlheller, Botao Zhang, Stephen J. Richards, Tingfei Chen, Jingjing Wu, Ronald C. Bruntz, Marisa E. Gilliam, Mitsuo Yamauchi, Bo Liang, Houfu Guo\",\"doi\":\"10.1038/s41467-025-61973-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Collagen glucosyltransferases catalyze collagen glucosylation critical for biology and diseases, yet their structural regulation remains unclear. Here, we report crystal structures of a mimiviral collagen glucosyltransferase in its apo form and in complexes with uridine diphosphate (UDP) and the disaccharide product. We reveal that the enzyme forms a homodimer, stabilized by a loop from one subunit locking into a cleft on the other, enabling UDP-glucose binding cooperativity and enzymatic activity, a property conserved in the human homolog. The structures support an induced fit model for UDP interaction. The dimerization also forms an extended cleft flanked by two active sites, likely facilitating collagen recognition. Unexpectedly, the mimiviral enzyme also synthesizes a prebiotic disaccharide kojibiose. An elongated pocket near the active site allows the enzyme to use UDP-glucose and glucose for kojibiose production. We confirm the enzyme’s kojibiose synthesis activity in vitro and in vivo. These insights inform glucosyltransferase function and open new avenues for inhibitor development and kojibiose biosynthesis.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61973-x\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61973-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Structural basis of collagen glucosyltransferase function and its serendipitous role in kojibiose synthesis
Collagen glucosyltransferases catalyze collagen glucosylation critical for biology and diseases, yet their structural regulation remains unclear. Here, we report crystal structures of a mimiviral collagen glucosyltransferase in its apo form and in complexes with uridine diphosphate (UDP) and the disaccharide product. We reveal that the enzyme forms a homodimer, stabilized by a loop from one subunit locking into a cleft on the other, enabling UDP-glucose binding cooperativity and enzymatic activity, a property conserved in the human homolog. The structures support an induced fit model for UDP interaction. The dimerization also forms an extended cleft flanked by two active sites, likely facilitating collagen recognition. Unexpectedly, the mimiviral enzyme also synthesizes a prebiotic disaccharide kojibiose. An elongated pocket near the active site allows the enzyme to use UDP-glucose and glucose for kojibiose production. We confirm the enzyme’s kojibiose synthesis activity in vitro and in vivo. These insights inform glucosyltransferase function and open new avenues for inhibitor development and kojibiose biosynthesis.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.