在缺氧环境中,地聚合威胁到与铁相关的有机碳的持久性

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Cheng Zhao, Yingxun Du, Hongwei Wang, Wenjie Zhou, Fan Xun, Shun Liu, Biao Li, Xiancai Lu, Qinglong L. Wu, Ke-Qing Xiao, Peng Xing
{"title":"在缺氧环境中,地聚合威胁到与铁相关的有机碳的持久性","authors":"Cheng Zhao, Yingxun Du, Hongwei Wang, Wenjie Zhou, Fan Xun, Shun Liu, Biao Li, Xiancai Lu, Qinglong L. Wu, Ke-Qing Xiao, Peng Xing","doi":"10.1038/s41467-025-62016-1","DOIUrl":null,"url":null,"abstract":"<p>The sequestration of organic carbon (OC) through mineral association in soils and sediments is a crucial process that regulates carbon sink dynamics and the global carbon cycle. However, minerals can participate in both abiotic and biotic OC transformations, altering the persistence of mineral-associated OC under anoxic conditions. In this work, we report that synergistic interactions among metal (oxyhydr)oxides, such as iron (Fe), manganese (Mn), and aluminum (Al) drive the polymerization of simple organic molecules into macromolecular geopolymers, increasing their electron transfer capacity by 52–115%. These geopolymers function as electron shuttles, enhancing OC decomposition through microbial dissimilatory iron reduction. This reduces the mean retention time (MRT) of OC bound to active and inert Fe minerals by 51.4 ± 15.6% and 74.1 ± 13.7%, respectively. Future carbon turnover models should explicitly account for the mineral composition, redox fluctuations, and microbial metabolic pathways to advance the understanding of the Earth’s carbon sink.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"282 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geopolymerization threatens the persistence of organic carbon associated with iron in anoxic environments\",\"authors\":\"Cheng Zhao, Yingxun Du, Hongwei Wang, Wenjie Zhou, Fan Xun, Shun Liu, Biao Li, Xiancai Lu, Qinglong L. Wu, Ke-Qing Xiao, Peng Xing\",\"doi\":\"10.1038/s41467-025-62016-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The sequestration of organic carbon (OC) through mineral association in soils and sediments is a crucial process that regulates carbon sink dynamics and the global carbon cycle. However, minerals can participate in both abiotic and biotic OC transformations, altering the persistence of mineral-associated OC under anoxic conditions. In this work, we report that synergistic interactions among metal (oxyhydr)oxides, such as iron (Fe), manganese (Mn), and aluminum (Al) drive the polymerization of simple organic molecules into macromolecular geopolymers, increasing their electron transfer capacity by 52–115%. These geopolymers function as electron shuttles, enhancing OC decomposition through microbial dissimilatory iron reduction. This reduces the mean retention time (MRT) of OC bound to active and inert Fe minerals by 51.4 ± 15.6% and 74.1 ± 13.7%, respectively. Future carbon turnover models should explicitly account for the mineral composition, redox fluctuations, and microbial metabolic pathways to advance the understanding of the Earth’s carbon sink.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"282 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62016-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62016-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

有机碳在土壤和沉积物中通过矿物结合进行固存是调节碳汇动态和全球碳循环的重要过程。然而,矿物质可以参与非生物和生物OC转化,改变缺氧条件下矿物相关OC的持久性。在这项工作中,我们报告了金属(含氧)氧化物(如铁(Fe),锰(Mn)和铝(Al))之间的协同相互作用驱动简单有机分子聚合成大分子地聚合物,将其电子转移能力提高了52-115%。这些地聚合物起着电子穿梭的作用,通过微生物异化铁还原来促进OC的分解。这使得OC与活性和惰性铁矿物结合的平均保留时间(MRT)分别减少了51.4±15.6%和74.1±13.7%。未来的碳周转模型应该明确考虑矿物组成、氧化还原波动和微生物代谢途径,以促进对地球碳汇的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Geopolymerization threatens the persistence of organic carbon associated with iron in anoxic environments

Geopolymerization threatens the persistence of organic carbon associated with iron in anoxic environments

The sequestration of organic carbon (OC) through mineral association in soils and sediments is a crucial process that regulates carbon sink dynamics and the global carbon cycle. However, minerals can participate in both abiotic and biotic OC transformations, altering the persistence of mineral-associated OC under anoxic conditions. In this work, we report that synergistic interactions among metal (oxyhydr)oxides, such as iron (Fe), manganese (Mn), and aluminum (Al) drive the polymerization of simple organic molecules into macromolecular geopolymers, increasing their electron transfer capacity by 52–115%. These geopolymers function as electron shuttles, enhancing OC decomposition through microbial dissimilatory iron reduction. This reduces the mean retention time (MRT) of OC bound to active and inert Fe minerals by 51.4 ± 15.6% and 74.1 ± 13.7%, respectively. Future carbon turnover models should explicitly account for the mineral composition, redox fluctuations, and microbial metabolic pathways to advance the understanding of the Earth’s carbon sink.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信