Cheng Zhao, Yingxun Du, Hongwei Wang, Wenjie Zhou, Fan Xun, Shun Liu, Biao Li, Xiancai Lu, Qinglong L. Wu, Ke-Qing Xiao, Peng Xing
{"title":"在缺氧环境中,地聚合威胁到与铁相关的有机碳的持久性","authors":"Cheng Zhao, Yingxun Du, Hongwei Wang, Wenjie Zhou, Fan Xun, Shun Liu, Biao Li, Xiancai Lu, Qinglong L. Wu, Ke-Qing Xiao, Peng Xing","doi":"10.1038/s41467-025-62016-1","DOIUrl":null,"url":null,"abstract":"<p>The sequestration of organic carbon (OC) through mineral association in soils and sediments is a crucial process that regulates carbon sink dynamics and the global carbon cycle. However, minerals can participate in both abiotic and biotic OC transformations, altering the persistence of mineral-associated OC under anoxic conditions. In this work, we report that synergistic interactions among metal (oxyhydr)oxides, such as iron (Fe), manganese (Mn), and aluminum (Al) drive the polymerization of simple organic molecules into macromolecular geopolymers, increasing their electron transfer capacity by 52–115%. These geopolymers function as electron shuttles, enhancing OC decomposition through microbial dissimilatory iron reduction. This reduces the mean retention time (MRT) of OC bound to active and inert Fe minerals by 51.4 ± 15.6% and 74.1 ± 13.7%, respectively. Future carbon turnover models should explicitly account for the mineral composition, redox fluctuations, and microbial metabolic pathways to advance the understanding of the Earth’s carbon sink.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"282 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geopolymerization threatens the persistence of organic carbon associated with iron in anoxic environments\",\"authors\":\"Cheng Zhao, Yingxun Du, Hongwei Wang, Wenjie Zhou, Fan Xun, Shun Liu, Biao Li, Xiancai Lu, Qinglong L. Wu, Ke-Qing Xiao, Peng Xing\",\"doi\":\"10.1038/s41467-025-62016-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The sequestration of organic carbon (OC) through mineral association in soils and sediments is a crucial process that regulates carbon sink dynamics and the global carbon cycle. However, minerals can participate in both abiotic and biotic OC transformations, altering the persistence of mineral-associated OC under anoxic conditions. In this work, we report that synergistic interactions among metal (oxyhydr)oxides, such as iron (Fe), manganese (Mn), and aluminum (Al) drive the polymerization of simple organic molecules into macromolecular geopolymers, increasing their electron transfer capacity by 52–115%. These geopolymers function as electron shuttles, enhancing OC decomposition through microbial dissimilatory iron reduction. This reduces the mean retention time (MRT) of OC bound to active and inert Fe minerals by 51.4 ± 15.6% and 74.1 ± 13.7%, respectively. Future carbon turnover models should explicitly account for the mineral composition, redox fluctuations, and microbial metabolic pathways to advance the understanding of the Earth’s carbon sink.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"282 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62016-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62016-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Geopolymerization threatens the persistence of organic carbon associated with iron in anoxic environments
The sequestration of organic carbon (OC) through mineral association in soils and sediments is a crucial process that regulates carbon sink dynamics and the global carbon cycle. However, minerals can participate in both abiotic and biotic OC transformations, altering the persistence of mineral-associated OC under anoxic conditions. In this work, we report that synergistic interactions among metal (oxyhydr)oxides, such as iron (Fe), manganese (Mn), and aluminum (Al) drive the polymerization of simple organic molecules into macromolecular geopolymers, increasing their electron transfer capacity by 52–115%. These geopolymers function as electron shuttles, enhancing OC decomposition through microbial dissimilatory iron reduction. This reduces the mean retention time (MRT) of OC bound to active and inert Fe minerals by 51.4 ± 15.6% and 74.1 ± 13.7%, respectively. Future carbon turnover models should explicitly account for the mineral composition, redox fluctuations, and microbial metabolic pathways to advance the understanding of the Earth’s carbon sink.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.