开发机器人辅助根治性前列腺切除术相识别的人工智能模型

IF 4.4 2区 医学 Q1 UROLOGY & NEPHROLOGY
Hideto Ueki, Munenori Uemura, Kiyoyuki Chinzei, Kosuke Takahashi, Naoto Wakita, Yasuyoshi Okamura, Kotaro Suzuki, Yukari Bando, Takuto Hara, Tomoaki Terakawa, Akihisa Yao, Jun Teishima, Koji Chiba, Hideaki Miyake
{"title":"开发机器人辅助根治性前列腺切除术相识别的人工智能模型","authors":"Hideto Ueki, Munenori Uemura, Kiyoyuki Chinzei, Kosuke Takahashi, Naoto Wakita, Yasuyoshi Okamura, Kotaro Suzuki, Yukari Bando, Takuto Hara, Tomoaki Terakawa, Akihisa Yao, Jun Teishima, Koji Chiba, Hideaki Miyake","doi":"10.1111/bju.16862","DOIUrl":null,"url":null,"abstract":"ObjectivesTo develop and evaluate a convolutional neural network (CNN)‐based model for recognising surgical phases in robot‐assisted laparoscopic radical prostatectomy (RARP), with an emphasis on model interpretability and cross‐platform validation.MethodsA CNN using EfficientNet B7 was trained on video data from 75 RARP cases with the hinotori robotic system. Seven phases were annotated: bladder drop, prostate preparation, bladder neck dissection, seminal vesicle dissection, posterior dissection, apical dissection, and vesicourethral anastomosis. A total of 808 774 video frames were extracted at 1 frame/s for training and testing. Validation was performed on 25 RARP cases using the da Vinci robotic system to assess cross‐platform generalisability. Gradient‐weighted class activation mapping was used to enhance interpretability by identifying key regions of interest for phase classification.ResultsThe CNN achieved 0.90 accuracy on the hinotori test set but dropped to 0.64 on the da Vinci dataset, thus indicating cross‐platform limitations. Phase‐specific F1 scores ranged from 0.77 to 0.97, with lower performance in the phase of seminal vesicle dissection, and apical dissection. Gradient‐weighted class activation mapping visualisations revealed the model's focus on central pelvic structures rather than transient instruments, enhancing interpretability and insights into phase classification.ConclusionsThe model demonstrated high accuracy on a single robotic platform but requires further refinement for consistent cross‐platform performance. Interpretability techniques will foster clinical trust and integration into workflows, advancing robotic surgery applications.","PeriodicalId":8985,"journal":{"name":"BJU International","volume":"13 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing an artificial intelligence model for phase recognition in robot‐assisted radical prostatectomy\",\"authors\":\"Hideto Ueki, Munenori Uemura, Kiyoyuki Chinzei, Kosuke Takahashi, Naoto Wakita, Yasuyoshi Okamura, Kotaro Suzuki, Yukari Bando, Takuto Hara, Tomoaki Terakawa, Akihisa Yao, Jun Teishima, Koji Chiba, Hideaki Miyake\",\"doi\":\"10.1111/bju.16862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ObjectivesTo develop and evaluate a convolutional neural network (CNN)‐based model for recognising surgical phases in robot‐assisted laparoscopic radical prostatectomy (RARP), with an emphasis on model interpretability and cross‐platform validation.MethodsA CNN using EfficientNet B7 was trained on video data from 75 RARP cases with the hinotori robotic system. Seven phases were annotated: bladder drop, prostate preparation, bladder neck dissection, seminal vesicle dissection, posterior dissection, apical dissection, and vesicourethral anastomosis. A total of 808 774 video frames were extracted at 1 frame/s for training and testing. Validation was performed on 25 RARP cases using the da Vinci robotic system to assess cross‐platform generalisability. Gradient‐weighted class activation mapping was used to enhance interpretability by identifying key regions of interest for phase classification.ResultsThe CNN achieved 0.90 accuracy on the hinotori test set but dropped to 0.64 on the da Vinci dataset, thus indicating cross‐platform limitations. Phase‐specific F1 scores ranged from 0.77 to 0.97, with lower performance in the phase of seminal vesicle dissection, and apical dissection. Gradient‐weighted class activation mapping visualisations revealed the model's focus on central pelvic structures rather than transient instruments, enhancing interpretability and insights into phase classification.ConclusionsThe model demonstrated high accuracy on a single robotic platform but requires further refinement for consistent cross‐platform performance. Interpretability techniques will foster clinical trust and integration into workflows, advancing robotic surgery applications.\",\"PeriodicalId\":8985,\"journal\":{\"name\":\"BJU International\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BJU International\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/bju.16862\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BJU International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/bju.16862","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的开发和评估基于卷积神经网络(CNN)的机器人辅助腹腔镜根治性前列腺切除术(RARP)手术阶段识别模型,重点关注模型的可解释性和跨平台验证。方法利用hinotori机器人系统对75例RARP病例的视频数据进行高效网络B7训练。记录膀胱脱落、前列腺准备、膀胱颈清扫、精囊清扫、后路清扫、根尖清扫、膀胱输尿管吻合7个阶段。以1帧/秒的速度提取视频帧共808 774帧,用于训练和测试。使用达芬奇机器人系统对25例RARP病例进行验证,以评估跨平台的通用性。梯度加权类激活映射通过识别感兴趣的关键区域来增强相位分类的可解释性。结果CNN在hinotori测试集上达到了0.90的准确率,但在达芬奇数据集上下降到0.64,这表明了跨平台的局限性。阶段特异性F1评分范围为0.77 - 0.97,精囊分离和根尖分离阶段表现较差。梯度加权类激活映射可视化揭示了该模型的重点是中央盆腔结构,而不是瞬态仪器,增强了可解释性和对阶段分类的见解。该模型在单个机器人平台上显示出较高的精度,但需要进一步改进以获得一致的跨平台性能。可解释性技术将促进临床信任和集成到工作流程中,推进机器人手术的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developing an artificial intelligence model for phase recognition in robot‐assisted radical prostatectomy
ObjectivesTo develop and evaluate a convolutional neural network (CNN)‐based model for recognising surgical phases in robot‐assisted laparoscopic radical prostatectomy (RARP), with an emphasis on model interpretability and cross‐platform validation.MethodsA CNN using EfficientNet B7 was trained on video data from 75 RARP cases with the hinotori robotic system. Seven phases were annotated: bladder drop, prostate preparation, bladder neck dissection, seminal vesicle dissection, posterior dissection, apical dissection, and vesicourethral anastomosis. A total of 808 774 video frames were extracted at 1 frame/s for training and testing. Validation was performed on 25 RARP cases using the da Vinci robotic system to assess cross‐platform generalisability. Gradient‐weighted class activation mapping was used to enhance interpretability by identifying key regions of interest for phase classification.ResultsThe CNN achieved 0.90 accuracy on the hinotori test set but dropped to 0.64 on the da Vinci dataset, thus indicating cross‐platform limitations. Phase‐specific F1 scores ranged from 0.77 to 0.97, with lower performance in the phase of seminal vesicle dissection, and apical dissection. Gradient‐weighted class activation mapping visualisations revealed the model's focus on central pelvic structures rather than transient instruments, enhancing interpretability and insights into phase classification.ConclusionsThe model demonstrated high accuracy on a single robotic platform but requires further refinement for consistent cross‐platform performance. Interpretability techniques will foster clinical trust and integration into workflows, advancing robotic surgery applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BJU International
BJU International 医学-泌尿学与肾脏学
CiteScore
9.10
自引率
4.40%
发文量
262
审稿时长
1 months
期刊介绍: BJUI is one of the most highly respected medical journals in the world, with a truly international range of published papers and appeal. Every issue gives invaluable practical information in the form of original articles, reviews, comments, surgical education articles, and translational science articles in the field of urology. BJUI employs topical sections, and is in full colour, making it easier to browse or search for something specific.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信