Philipp Mäder , Anja Listl , Zuzana Hochmanová , Wolfgang Armbruster , Paula Harkes , Christian Poll , Ellen Kandeler
{"title":"玉米叶片中灭虫威和硼酸钠残留向土壤的转移及其对土壤微生物的影响","authors":"Philipp Mäder , Anja Listl , Zuzana Hochmanová , Wolfgang Armbruster , Paula Harkes , Christian Poll , Ellen Kandeler","doi":"10.1016/j.envpol.2025.126862","DOIUrl":null,"url":null,"abstract":"<div><div>Plant materials that have been in contact with pesticides can be incorporated into the soil, posing a potential risk to non-target soil organisms and, hence, soil functions. This study investigated effects of two pesticides applied to maize leaves on the soil microbial community, activity and function. The herbicide prosulfocarb (PSC) and the fungicide boscalid (BSC) were applied alone or in combination to fresh or aged maize leaves, which were incorporated into soil. During a 56-day incubation we quantified pesticide residues in soil and maize leaves as well as maize-derived C incorporation into different microbial fractions (CO<sub>2</sub>, extractable organic carbon, microbial biomass and main microbial groups). Prosulfocarb residues on maize and in soil decreased to below 5 % after 56 days. However, BSC residues were transferred from maize into the soil, as indicated by an increase in BSC residues in soil of around 15 %. Prosulfocarb initially inhibited the synthesis of soil bacterial phospholipids by 25–45 %, which was accompanied by a decrease in the incorporation of maize-derived C into microbial biomass by 68–70 %. Following this, microorganisms shifted their nutrient acquisition strategy towards carbon and phosphorus, which led to increased utilization of easily available maize-derived C. Boscalid transiently inhibited the growth of soil fungi, reduced soil respiration, and mineralization of maize. In the future, pesticide accumulation through transfer from plant material into soils and the mode of action dependent effects on soil microorganisms need to be considered for risk assessment.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"383 ","pages":"Article 126862"},"PeriodicalIF":7.6000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer of prosulfocarb and boscalid residues from maize leaves to soil and their effects on soil microorganisms\",\"authors\":\"Philipp Mäder , Anja Listl , Zuzana Hochmanová , Wolfgang Armbruster , Paula Harkes , Christian Poll , Ellen Kandeler\",\"doi\":\"10.1016/j.envpol.2025.126862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Plant materials that have been in contact with pesticides can be incorporated into the soil, posing a potential risk to non-target soil organisms and, hence, soil functions. This study investigated effects of two pesticides applied to maize leaves on the soil microbial community, activity and function. The herbicide prosulfocarb (PSC) and the fungicide boscalid (BSC) were applied alone or in combination to fresh or aged maize leaves, which were incorporated into soil. During a 56-day incubation we quantified pesticide residues in soil and maize leaves as well as maize-derived C incorporation into different microbial fractions (CO<sub>2</sub>, extractable organic carbon, microbial biomass and main microbial groups). Prosulfocarb residues on maize and in soil decreased to below 5 % after 56 days. However, BSC residues were transferred from maize into the soil, as indicated by an increase in BSC residues in soil of around 15 %. Prosulfocarb initially inhibited the synthesis of soil bacterial phospholipids by 25–45 %, which was accompanied by a decrease in the incorporation of maize-derived C into microbial biomass by 68–70 %. Following this, microorganisms shifted their nutrient acquisition strategy towards carbon and phosphorus, which led to increased utilization of easily available maize-derived C. Boscalid transiently inhibited the growth of soil fungi, reduced soil respiration, and mineralization of maize. In the future, pesticide accumulation through transfer from plant material into soils and the mode of action dependent effects on soil microorganisms need to be considered for risk assessment.</div></div>\",\"PeriodicalId\":311,\"journal\":{\"name\":\"Environmental Pollution\",\"volume\":\"383 \",\"pages\":\"Article 126862\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Pollution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0269749125012357\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749125012357","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Transfer of prosulfocarb and boscalid residues from maize leaves to soil and their effects on soil microorganisms
Plant materials that have been in contact with pesticides can be incorporated into the soil, posing a potential risk to non-target soil organisms and, hence, soil functions. This study investigated effects of two pesticides applied to maize leaves on the soil microbial community, activity and function. The herbicide prosulfocarb (PSC) and the fungicide boscalid (BSC) were applied alone or in combination to fresh or aged maize leaves, which were incorporated into soil. During a 56-day incubation we quantified pesticide residues in soil and maize leaves as well as maize-derived C incorporation into different microbial fractions (CO2, extractable organic carbon, microbial biomass and main microbial groups). Prosulfocarb residues on maize and in soil decreased to below 5 % after 56 days. However, BSC residues were transferred from maize into the soil, as indicated by an increase in BSC residues in soil of around 15 %. Prosulfocarb initially inhibited the synthesis of soil bacterial phospholipids by 25–45 %, which was accompanied by a decrease in the incorporation of maize-derived C into microbial biomass by 68–70 %. Following this, microorganisms shifted their nutrient acquisition strategy towards carbon and phosphorus, which led to increased utilization of easily available maize-derived C. Boscalid transiently inhibited the growth of soil fungi, reduced soil respiration, and mineralization of maize. In the future, pesticide accumulation through transfer from plant material into soils and the mode of action dependent effects on soil microorganisms need to be considered for risk assessment.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.