图像处理与光学矩阵矢量乘法器实现的编码和解码任务

IF 23.4 Q1 OPTICS
Minjoo Kim, Yelim Kim, Won Il Park
{"title":"图像处理与光学矩阵矢量乘法器实现的编码和解码任务","authors":"Minjoo Kim, Yelim Kim, Won Il Park","doi":"10.1038/s41377-025-01904-z","DOIUrl":null,"url":null,"abstract":"<p>This study introduces an optical neural network (ONN)-based autoencoder for efficient image processing, utilizing specialized optical matrix-vector multipliers for both encoding and decoding tasks. To address the challenges in efficient decoding, we propose a method that optimizes output processing through scalar multiplications, enhancing performance in generating higher-dimensional outputs. By employing on-system iterative tuning, we mitigate hardware imperfections and noise, progressively improving image reconstruction accuracy to near-digital quality. Furthermore, our approach supports noise reduction and optical image generation, enabling models such as denoising autoencoders, variational autoencoders, and generative adversarial networks. Our results demonstrate that ONN-based systems have the potential to surpass the energy efficiency of traditional electronic systems, enabling real-time, low-power image processing in applications such as medical imaging, autonomous vehicles, and edge computing.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"14 1","pages":""},"PeriodicalIF":23.4000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image processing with Optical matrix vector multipliers implemented for encoding and decoding tasks\",\"authors\":\"Minjoo Kim, Yelim Kim, Won Il Park\",\"doi\":\"10.1038/s41377-025-01904-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study introduces an optical neural network (ONN)-based autoencoder for efficient image processing, utilizing specialized optical matrix-vector multipliers for both encoding and decoding tasks. To address the challenges in efficient decoding, we propose a method that optimizes output processing through scalar multiplications, enhancing performance in generating higher-dimensional outputs. By employing on-system iterative tuning, we mitigate hardware imperfections and noise, progressively improving image reconstruction accuracy to near-digital quality. Furthermore, our approach supports noise reduction and optical image generation, enabling models such as denoising autoencoders, variational autoencoders, and generative adversarial networks. Our results demonstrate that ONN-based systems have the potential to surpass the energy efficiency of traditional electronic systems, enabling real-time, low-power image processing in applications such as medical imaging, autonomous vehicles, and edge computing.</p>\",\"PeriodicalId\":18069,\"journal\":{\"name\":\"Light-Science & Applications\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":23.4000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light-Science & Applications\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-025-01904-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01904-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种基于光学神经网络(ONN)的自动编码器,用于有效的图像处理,利用专门的光学矩阵矢量乘法器进行编码和解码任务。为了解决高效解码的挑战,我们提出了一种通过标量乘法优化输出处理的方法,提高了生成高维输出的性能。通过采用系统上的迭代调谐,我们减轻了硬件缺陷和噪声,逐步提高图像重建精度到接近数字质量。此外,我们的方法支持降噪和光学图像生成,支持去噪自编码器、变分自编码器和生成对抗网络等模型。我们的研究结果表明,基于onn的系统有潜力超越传统电子系统的能源效率,在医疗成像、自动驾驶汽车和边缘计算等应用中实现实时、低功耗的图像处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Image processing with Optical matrix vector multipliers implemented for encoding and decoding tasks

Image processing with Optical matrix vector multipliers implemented for encoding and decoding tasks

This study introduces an optical neural network (ONN)-based autoencoder for efficient image processing, utilizing specialized optical matrix-vector multipliers for both encoding and decoding tasks. To address the challenges in efficient decoding, we propose a method that optimizes output processing through scalar multiplications, enhancing performance in generating higher-dimensional outputs. By employing on-system iterative tuning, we mitigate hardware imperfections and noise, progressively improving image reconstruction accuracy to near-digital quality. Furthermore, our approach supports noise reduction and optical image generation, enabling models such as denoising autoencoders, variational autoencoders, and generative adversarial networks. Our results demonstrate that ONN-based systems have the potential to surpass the energy efficiency of traditional electronic systems, enabling real-time, low-power image processing in applications such as medical imaging, autonomous vehicles, and edge computing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信