在抗逆性和耐受性之间的权衡是对过氧化氢的适应性反应的基础。

IF 7.7
Cell systems Pub Date : 2025-07-16 Epub Date: 2025-06-18 DOI:10.1016/j.cels.2025.101320
Basile Jacquel, Bor Kavčič, Théo Aspert, Audrey Matifas, Antoine Kuehn, Andrei Zhuravlev, Elena Byckov, Bruce Morgan, Thomas Julou, Gilles Charvin
{"title":"在抗逆性和耐受性之间的权衡是对过氧化氢的适应性反应的基础。","authors":"Basile Jacquel, Bor Kavčič, Théo Aspert, Audrey Matifas, Antoine Kuehn, Andrei Zhuravlev, Elena Byckov, Bruce Morgan, Thomas Julou, Gilles Charvin","doi":"10.1016/j.cels.2025.101320","DOIUrl":null,"url":null,"abstract":"<p><p>Physiological adaptation to environmental stress involves distinct molecular responses leading to either stress resistance, which maintains proliferation by degrading the stressor's effects, or tolerance, which prioritizes survival over proliferation. While these strategies are complementary, their coordination remains unclear. Using microfluidics and live-cell imaging, we investigated the genetic basis of their interplay during the response to hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) in budding yeast. We found that deleting zwf1Δ, which controls NADPH synthesis via the pentose phosphate pathway (PPP), reduced resistance but unexpectedly enhanced tolerance to H<sub>2</sub>O<sub>2</sub>. This trade-off was further characterized through genetic and environmental interventions and found to be conserved in bacteria. Our results support a model in which redox signaling shifts cells to a nutrient-dependent tolerant state via protein kinase A inhibition when the H<sub>2</sub>O<sub>2</sub> homeostatic response is overwhelmed. This framework could inform synergistic therapies targeting resistance and tolerance to prevent drug escape and disease relapse. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":"16 7","pages":"101320"},"PeriodicalIF":7.7000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A trade-off between stress resistance and tolerance underlies the adaptive response to hydrogen peroxide.\",\"authors\":\"Basile Jacquel, Bor Kavčič, Théo Aspert, Audrey Matifas, Antoine Kuehn, Andrei Zhuravlev, Elena Byckov, Bruce Morgan, Thomas Julou, Gilles Charvin\",\"doi\":\"10.1016/j.cels.2025.101320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Physiological adaptation to environmental stress involves distinct molecular responses leading to either stress resistance, which maintains proliferation by degrading the stressor's effects, or tolerance, which prioritizes survival over proliferation. While these strategies are complementary, their coordination remains unclear. Using microfluidics and live-cell imaging, we investigated the genetic basis of their interplay during the response to hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) in budding yeast. We found that deleting zwf1Δ, which controls NADPH synthesis via the pentose phosphate pathway (PPP), reduced resistance but unexpectedly enhanced tolerance to H<sub>2</sub>O<sub>2</sub>. This trade-off was further characterized through genetic and environmental interventions and found to be conserved in bacteria. Our results support a model in which redox signaling shifts cells to a nutrient-dependent tolerant state via protein kinase A inhibition when the H<sub>2</sub>O<sub>2</sub> homeostatic response is overwhelmed. This framework could inform synergistic therapies targeting resistance and tolerance to prevent drug escape and disease relapse. A record of this paper's transparent peer review process is included in the supplemental information.</p>\",\"PeriodicalId\":93929,\"journal\":{\"name\":\"Cell systems\",\"volume\":\"16 7\",\"pages\":\"101320\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2025.101320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对环境压力的生理适应包括不同的分子反应,导致抗逆性,通过降低压力源的作用来维持增殖,或耐受性,优先考虑生存而不是增殖。虽然这些战略是互补的,但它们之间的协调仍不清楚。利用微流体和活细胞成像技术,我们研究了出芽酵母对过氧化氢(H2O2)反应过程中两者相互作用的遗传基础。我们发现,删除通过戊糖磷酸途径(PPP)控制NADPH合成的zwf1Δ降低了抗性,但意外地增强了对H2O2的耐受性。这种权衡通过遗传和环境干预进一步表征,并在细菌中被发现是保守的。我们的研究结果支持一个模型,在这个模型中,当H2O2稳态反应被淹没时,氧化还原信号通过蛋白激酶a抑制将细胞转变为营养依赖的耐受状态。这一框架可以为针对耐药性和耐受性的协同治疗提供信息,以防止药物逃逸和疾病复发。本文的透明同行评议过程记录包含在补充信息中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A trade-off between stress resistance and tolerance underlies the adaptive response to hydrogen peroxide.

Physiological adaptation to environmental stress involves distinct molecular responses leading to either stress resistance, which maintains proliferation by degrading the stressor's effects, or tolerance, which prioritizes survival over proliferation. While these strategies are complementary, their coordination remains unclear. Using microfluidics and live-cell imaging, we investigated the genetic basis of their interplay during the response to hydrogen peroxide (H2O2) in budding yeast. We found that deleting zwf1Δ, which controls NADPH synthesis via the pentose phosphate pathway (PPP), reduced resistance but unexpectedly enhanced tolerance to H2O2. This trade-off was further characterized through genetic and environmental interventions and found to be conserved in bacteria. Our results support a model in which redox signaling shifts cells to a nutrient-dependent tolerant state via protein kinase A inhibition when the H2O2 homeostatic response is overwhelmed. This framework could inform synergistic therapies targeting resistance and tolerance to prevent drug escape and disease relapse. A record of this paper's transparent peer review process is included in the supplemental information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信