[以玄参多糖和熊去氧胆酸为载体的蟾毒灵纳米颗粒的制备、表征及体外抗肝肿瘤活性研究]。

Q3 Pharmacology, Toxicology and Pharmaceutics
Zhen Zheng, Bi-Qi Deng, Xue-Mei Chen, Li-Qiao Zhu, Hua-Gang Sheng
{"title":"[以玄参多糖和熊去氧胆酸为载体的蟾毒灵纳米颗粒的制备、表征及体外抗肝肿瘤活性研究]。","authors":"Zhen Zheng, Bi-Qi Deng, Xue-Mei Chen, Li-Qiao Zhu, Hua-Gang Sheng","doi":"10.19540/j.cnki.cjcmm.20250307.301","DOIUrl":null,"url":null,"abstract":"<p><p>Bufalin(BF)has a significant anti-tumor effect, but its clinical application is severely restricted by its high toxicity and poor water solubility. In this study, Scrophularia ningpoensis polysaccharide(SNP)and ursodeoxycholic acid(UDCA) were synthesized into an SNP-UDCA conjugate. BF was encapsulated to prepare BF/SNP-UDCA nanoparticles(NPs). The amphiphilic compound SNP-UDCA was synthesized via the one-step method, and its structure was characterized by Fourier-transform infrared spectroscopy(FT-IR)and proton nuclear magnetic resonance(~1H-NMR). The preparation process of BF/SNP-UDCA NPs was optimized through single-factor investigations. The encapsulation efficiency and drug-loading capacity of BF/SNP-UDCA NPs were determined by high-performance liquid chromatography(HPLC). The molecular form of BF/SNP-UDCA NPs was characterized by using a transmission electron microscope, X-ray diffraction(XRD), and differential scanning calorimeter(DSC). Additionally, the stability of BF/SNP-UDCA NPs was evaluated. The release behavior of BF/SNP-UDCA NPs at different pH values was determined by dialysis. The in vitro anti-tumor effect of BF/SNP-UDCA NPs was evaluated by MTT cytotoxicity assay, flow cytometry for apoptosis, and cellular uptake. The in vitro liver targeting was evaluated by measuring cellular uptake by laser confocal microscopy. The results demonstrated that the SNP-UDCA conjugate was successfully synthesized through an esterification reaction between SNP and UDCA. The preparation process of BF/SNP-UDCA NPs was as follows: the feed ratio of SNP-UDCA to BF was 2∶1, the ultrasonic time was 30 minutes, and the stirring time was two hours. The prepared BF/SNP-UDCA NPs were spherical in shape, with a particle size of(252.74±6.05)nm, an encapsulation efficiency of 65.00%±2.51%, and a drug-loading capacity of 6.80%±0.44%. The XRD and DSC results indicated that BF was encapsulated within the NPs and existed in a molecular or amorphous state. The short-term stability of BF/SNP-UDCA NPs and stability in DMEM medium are good, and their in vitro release behavior followed the first-order equation and was pH-dependent according to the in vitro experiment. Compared with BF, BF/SNP-UDCA NPs at the same concentration showed significantly stronger cytotoxicity and apoptotic effects on HepG2 cells(P&lt;0.05, P&lt;0.01). The uptake of coumarin 6(C6)/SNP-UDCA NPs in HepG2 cells was time-dependent and higher than that in HeLa cells at the same concentration of C6/SNP-UDCA NPs. Moreover, after treatment with SNP, the uptake of C6/SNP-UDCA NPs in HepG2 cells decreased. In conclusion, the preparation process of BF/SNP-UDCA NPs was simple and feasible. BF/SNP-UDCA NPs could enhance the targeting ability and inhibitory effect of BF on liver cancer cells. This study will provide a foundation for liver-targeting nanoformulations of BF.</p>","PeriodicalId":52437,"journal":{"name":"Zhongguo Zhongyao Zazhi","volume":"50 11","pages":"3013-3023"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Preparation, characterization, and in vitro anti-liver tumor activity of bufalin nanoparticles with Scrophularia ningpoensis polysaccharide and ursodeoxycholic acid as carriers].\",\"authors\":\"Zhen Zheng, Bi-Qi Deng, Xue-Mei Chen, Li-Qiao Zhu, Hua-Gang Sheng\",\"doi\":\"10.19540/j.cnki.cjcmm.20250307.301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bufalin(BF)has a significant anti-tumor effect, but its clinical application is severely restricted by its high toxicity and poor water solubility. In this study, Scrophularia ningpoensis polysaccharide(SNP)and ursodeoxycholic acid(UDCA) were synthesized into an SNP-UDCA conjugate. BF was encapsulated to prepare BF/SNP-UDCA nanoparticles(NPs). The amphiphilic compound SNP-UDCA was synthesized via the one-step method, and its structure was characterized by Fourier-transform infrared spectroscopy(FT-IR)and proton nuclear magnetic resonance(~1H-NMR). The preparation process of BF/SNP-UDCA NPs was optimized through single-factor investigations. The encapsulation efficiency and drug-loading capacity of BF/SNP-UDCA NPs were determined by high-performance liquid chromatography(HPLC). The molecular form of BF/SNP-UDCA NPs was characterized by using a transmission electron microscope, X-ray diffraction(XRD), and differential scanning calorimeter(DSC). Additionally, the stability of BF/SNP-UDCA NPs was evaluated. The release behavior of BF/SNP-UDCA NPs at different pH values was determined by dialysis. The in vitro anti-tumor effect of BF/SNP-UDCA NPs was evaluated by MTT cytotoxicity assay, flow cytometry for apoptosis, and cellular uptake. The in vitro liver targeting was evaluated by measuring cellular uptake by laser confocal microscopy. The results demonstrated that the SNP-UDCA conjugate was successfully synthesized through an esterification reaction between SNP and UDCA. The preparation process of BF/SNP-UDCA NPs was as follows: the feed ratio of SNP-UDCA to BF was 2∶1, the ultrasonic time was 30 minutes, and the stirring time was two hours. The prepared BF/SNP-UDCA NPs were spherical in shape, with a particle size of(252.74±6.05)nm, an encapsulation efficiency of 65.00%±2.51%, and a drug-loading capacity of 6.80%±0.44%. The XRD and DSC results indicated that BF was encapsulated within the NPs and existed in a molecular or amorphous state. The short-term stability of BF/SNP-UDCA NPs and stability in DMEM medium are good, and their in vitro release behavior followed the first-order equation and was pH-dependent according to the in vitro experiment. Compared with BF, BF/SNP-UDCA NPs at the same concentration showed significantly stronger cytotoxicity and apoptotic effects on HepG2 cells(P&lt;0.05, P&lt;0.01). The uptake of coumarin 6(C6)/SNP-UDCA NPs in HepG2 cells was time-dependent and higher than that in HeLa cells at the same concentration of C6/SNP-UDCA NPs. Moreover, after treatment with SNP, the uptake of C6/SNP-UDCA NPs in HepG2 cells decreased. In conclusion, the preparation process of BF/SNP-UDCA NPs was simple and feasible. BF/SNP-UDCA NPs could enhance the targeting ability and inhibitory effect of BF on liver cancer cells. This study will provide a foundation for liver-targeting nanoformulations of BF.</p>\",\"PeriodicalId\":52437,\"journal\":{\"name\":\"Zhongguo Zhongyao Zazhi\",\"volume\":\"50 11\",\"pages\":\"3013-3023\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zhongguo Zhongyao Zazhi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19540/j.cnki.cjcmm.20250307.301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhongguo Zhongyao Zazhi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19540/j.cnki.cjcmm.20250307.301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

蟾毒灵(BF)具有显著的抗肿瘤作用,但其毒性大、水溶性差,严重限制了其临床应用。本研究将玄参多糖(SNP)与熊去氧胆酸(UDCA)合成为SNP-UDCA缀合物。将BF包封制备BF/SNP-UDCA纳米颗粒(NPs)。采用一步法合成了两亲性化合物SNP-UDCA,并用傅里叶变换红外光谱(FT-IR)和质子核磁共振(~1H-NMR)对其结构进行了表征。通过单因素研究优化了BF/SNP-UDCA NPs的制备工艺。采用高效液相色谱法测定BF/SNP-UDCA NPs的包封率和载药量。利用透射电子显微镜、x射线衍射仪(XRD)和差示扫描量热仪(DSC)对BF/SNP-UDCA NPs的分子形态进行了表征。并对BF/SNP-UDCA NPs的稳定性进行了评价。通过透析测定BF/SNP-UDCA NPs在不同pH值下的释放行为。采用MTT细胞毒性试验、细胞凋亡流式细胞术和细胞摄取法评价BF/SNP-UDCA NPs的体外抗肿瘤作用。通过激光共聚焦显微镜测量细胞摄取来评估体外肝脏靶向性。结果表明,通过SNP与UDCA之间的酯化反应,成功合成了SNP-UDCA缀合物。BF/SNP-UDCA NPs的制备工艺为:SNP-UDCA与BF的进料比为2∶1,超声时间为30 min,搅拌时间为2 h。制备的BF/SNP-UDCA NPs为球形,粒径为(252.74±6.05)nm,包封率为65.00%±2.51%,载药量为6.80%±0.44%。XRD和DSC结果表明,BF被包裹在NPs内,以分子或非晶态存在。BF/SNP-UDCA NPs的短期稳定性和在DMEM培养基中的稳定性较好,体外释放行为符合一阶方程,且与ph有关。与BF相比,相同浓度的BF/SNP-UDCA NPs对HepG2细胞的细胞毒性和凋亡作用显著增强(P<0.05, P<0.01)。香豆素6(C6)/SNP-UDCA NPs在HepG2细胞中的摄取具有时间依赖性,且在相同浓度的C6/SNP-UDCA NPs下,HepG2细胞的摄取高于HeLa细胞。此外,在SNP处理后,HepG2细胞对C6/SNP- udca NPs的摄取减少。综上所述,BF/SNP-UDCA NPs的制备工艺简单可行。BF/SNP-UDCA NPs可增强BF对肝癌细胞的靶向能力和抑制作用。本研究将为肝靶向型BF纳米制剂的研制提供基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Preparation, characterization, and in vitro anti-liver tumor activity of bufalin nanoparticles with Scrophularia ningpoensis polysaccharide and ursodeoxycholic acid as carriers].

Bufalin(BF)has a significant anti-tumor effect, but its clinical application is severely restricted by its high toxicity and poor water solubility. In this study, Scrophularia ningpoensis polysaccharide(SNP)and ursodeoxycholic acid(UDCA) were synthesized into an SNP-UDCA conjugate. BF was encapsulated to prepare BF/SNP-UDCA nanoparticles(NPs). The amphiphilic compound SNP-UDCA was synthesized via the one-step method, and its structure was characterized by Fourier-transform infrared spectroscopy(FT-IR)and proton nuclear magnetic resonance(~1H-NMR). The preparation process of BF/SNP-UDCA NPs was optimized through single-factor investigations. The encapsulation efficiency and drug-loading capacity of BF/SNP-UDCA NPs were determined by high-performance liquid chromatography(HPLC). The molecular form of BF/SNP-UDCA NPs was characterized by using a transmission electron microscope, X-ray diffraction(XRD), and differential scanning calorimeter(DSC). Additionally, the stability of BF/SNP-UDCA NPs was evaluated. The release behavior of BF/SNP-UDCA NPs at different pH values was determined by dialysis. The in vitro anti-tumor effect of BF/SNP-UDCA NPs was evaluated by MTT cytotoxicity assay, flow cytometry for apoptosis, and cellular uptake. The in vitro liver targeting was evaluated by measuring cellular uptake by laser confocal microscopy. The results demonstrated that the SNP-UDCA conjugate was successfully synthesized through an esterification reaction between SNP and UDCA. The preparation process of BF/SNP-UDCA NPs was as follows: the feed ratio of SNP-UDCA to BF was 2∶1, the ultrasonic time was 30 minutes, and the stirring time was two hours. The prepared BF/SNP-UDCA NPs were spherical in shape, with a particle size of(252.74±6.05)nm, an encapsulation efficiency of 65.00%±2.51%, and a drug-loading capacity of 6.80%±0.44%. The XRD and DSC results indicated that BF was encapsulated within the NPs and existed in a molecular or amorphous state. The short-term stability of BF/SNP-UDCA NPs and stability in DMEM medium are good, and their in vitro release behavior followed the first-order equation and was pH-dependent according to the in vitro experiment. Compared with BF, BF/SNP-UDCA NPs at the same concentration showed significantly stronger cytotoxicity and apoptotic effects on HepG2 cells(P<0.05, P<0.01). The uptake of coumarin 6(C6)/SNP-UDCA NPs in HepG2 cells was time-dependent and higher than that in HeLa cells at the same concentration of C6/SNP-UDCA NPs. Moreover, after treatment with SNP, the uptake of C6/SNP-UDCA NPs in HepG2 cells decreased. In conclusion, the preparation process of BF/SNP-UDCA NPs was simple and feasible. BF/SNP-UDCA NPs could enhance the targeting ability and inhibitory effect of BF on liver cancer cells. This study will provide a foundation for liver-targeting nanoformulations of BF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Zhongguo Zhongyao Zazhi
Zhongguo Zhongyao Zazhi Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (all)
CiteScore
1.50
自引率
0.00%
发文量
581
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信