Vladislav Yakubov, Halsey Ostergaard, Shishira Bhagavath, Chu Lun Alex Leung, James Hughes, Evren Yasa, Mani Khezri, Sandra K Löschke, Qing Li, Anna M Paradowska
{"title":"固态铝构件虚拟加工的多模态缺陷分析及应用。","authors":"Vladislav Yakubov, Halsey Ostergaard, Shishira Bhagavath, Chu Lun Alex Leung, James Hughes, Evren Yasa, Mani Khezri, Sandra K Löschke, Qing Li, Anna M Paradowska","doi":"10.1007/s40964-024-00904-6","DOIUrl":null,"url":null,"abstract":"<p><p>Additive friction stir deposition (AFSD) is an emerging solid-state non-fusion additive manufacturing (AM) technology, which produces parts with wrought-like material properties, high deposition rates, and low residual stresses. However, impact of process interruption on defect formation and mechanical properties has not yet been well addressed in the literature. In this study, Al6061 aluminium structure with two final heights and deposition interruption is successfully manufactured via AFSD and characterised. Defect analysis conducted via optical microscopy, electron microscopy, and X-ray computed tomography reveals > 99% relative density with minimal defects in centre of the parts. However, tunnel defects at interface between substrate and deposit as well as kissing bonds are present. Edge of deposit contains tunnel defects due to preference for greater material deposition on advancing side of rotating tool. Virtual machining highlights the ability to remove defects via post-processing, avoiding mechanical performance impact of stress concentrating pores. Electron backscatter diffraction revealed regions with localised shear bands that contain 1-5 µm equivalent circular diameter grains. Kissing bonds are exhibited in areas separated by large grain size difference. Meanwhile, Vickers hardness testing reveals hardness variation with deposit height. This work advances the understanding of complex microstructure development, material flow, and mechanical behaviour of AFSD Al6061 alloy.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40964-024-00904-6.</p>","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"10 8","pages":"5281-5297"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12267324/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multimodal defect analysis and application of virtual machining for solid-state manufactured aluminium structure.\",\"authors\":\"Vladislav Yakubov, Halsey Ostergaard, Shishira Bhagavath, Chu Lun Alex Leung, James Hughes, Evren Yasa, Mani Khezri, Sandra K Löschke, Qing Li, Anna M Paradowska\",\"doi\":\"10.1007/s40964-024-00904-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Additive friction stir deposition (AFSD) is an emerging solid-state non-fusion additive manufacturing (AM) technology, which produces parts with wrought-like material properties, high deposition rates, and low residual stresses. However, impact of process interruption on defect formation and mechanical properties has not yet been well addressed in the literature. In this study, Al6061 aluminium structure with two final heights and deposition interruption is successfully manufactured via AFSD and characterised. Defect analysis conducted via optical microscopy, electron microscopy, and X-ray computed tomography reveals > 99% relative density with minimal defects in centre of the parts. However, tunnel defects at interface between substrate and deposit as well as kissing bonds are present. Edge of deposit contains tunnel defects due to preference for greater material deposition on advancing side of rotating tool. Virtual machining highlights the ability to remove defects via post-processing, avoiding mechanical performance impact of stress concentrating pores. Electron backscatter diffraction revealed regions with localised shear bands that contain 1-5 µm equivalent circular diameter grains. Kissing bonds are exhibited in areas separated by large grain size difference. Meanwhile, Vickers hardness testing reveals hardness variation with deposit height. This work advances the understanding of complex microstructure development, material flow, and mechanical behaviour of AFSD Al6061 alloy.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40964-024-00904-6.</p>\",\"PeriodicalId\":36643,\"journal\":{\"name\":\"Progress in Additive Manufacturing\",\"volume\":\"10 8\",\"pages\":\"5281-5297\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12267324/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Additive Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40964-024-00904-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Additive Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40964-024-00904-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Multimodal defect analysis and application of virtual machining for solid-state manufactured aluminium structure.
Additive friction stir deposition (AFSD) is an emerging solid-state non-fusion additive manufacturing (AM) technology, which produces parts with wrought-like material properties, high deposition rates, and low residual stresses. However, impact of process interruption on defect formation and mechanical properties has not yet been well addressed in the literature. In this study, Al6061 aluminium structure with two final heights and deposition interruption is successfully manufactured via AFSD and characterised. Defect analysis conducted via optical microscopy, electron microscopy, and X-ray computed tomography reveals > 99% relative density with minimal defects in centre of the parts. However, tunnel defects at interface between substrate and deposit as well as kissing bonds are present. Edge of deposit contains tunnel defects due to preference for greater material deposition on advancing side of rotating tool. Virtual machining highlights the ability to remove defects via post-processing, avoiding mechanical performance impact of stress concentrating pores. Electron backscatter diffraction revealed regions with localised shear bands that contain 1-5 µm equivalent circular diameter grains. Kissing bonds are exhibited in areas separated by large grain size difference. Meanwhile, Vickers hardness testing reveals hardness variation with deposit height. This work advances the understanding of complex microstructure development, material flow, and mechanical behaviour of AFSD Al6061 alloy.
Supplementary information: The online version contains supplementary material available at 10.1007/s40964-024-00904-6.
期刊介绍:
Progress in Additive Manufacturing promotes highly scored scientific investigations from academia, government and industry R&D activities. The journal publishes the advances in the processing of different kinds of materials by well-established and new Additive Manufacturing (AM) technologies. Manuscripts showing the progress in the processing and development of multi-materials by hybrid additive manufacturing or by the combination of additive and subtractive manufacturing technologies are also welcome. Progress in Additive Manufacturing serves as a platform for scientists to contribute full papers as well as review articles and short communications analyzing aspects ranging from data processing (new design tools, data formats), simulation, materials (ceramic, metals, polymers, composites, biomaterials and multi-materials), microstructure development, new AM processes or combination of processes (e.g. additive and subtractive, hybrid, multi-steps), parameter and process optimization, new testing methods for AM parts and process monitoring. The journal welcomes manuscripts in several AM topics, including: • Design tools and data format • Material aspects and new developments • Multi-material and composites • Microstructure evolution of AM parts • Optimization of existing processes • Development of new techniques and processing strategies (combination subtractive and additive methods, hybrid processes) • Integration with conventional manufacturing techniques • Innovative applications of AM parts (for tooling, high temperature or high performance applications) • Process monitoring and non-destructive testing of AM parts • Speed-up strategies for AM processes • New test methods and special features of AM parts