Sana Surma, Sumaira H, Misbah M, M S Dar, Bilal A Padder, Imran Khan, Khalid Mushtaq, Maheen M, Sehla K, Asha Nabi, Mushtaq A Lone, Snober S Mir, Ozer Callis, Mehraj D Shah
{"title":"印度喜马拉雅苹果西北根际木霉的形态、培养和分子特征。","authors":"Sana Surma, Sumaira H, Misbah M, M S Dar, Bilal A Padder, Imran Khan, Khalid Mushtaq, Maheen M, Sehla K, Asha Nabi, Mushtaq A Lone, Snober S Mir, Ozer Callis, Mehraj D Shah","doi":"10.1038/s41598-025-12086-4","DOIUrl":null,"url":null,"abstract":"<p><p>Plant disease management based on pesticide use has numerous detrimental effects on health and the environment. As a result, the adoption of environment-friendly disease management options is the best alternative to pesticide use. Therefore, the identification of locally available bio-agents like Trichoderma species using morpho-cultural and molecular approaches specifically targeting the internal transcribed spacer (ITS) region, translation elongation factor 1-alpha (TEF 1-α) and RNA polymerase B subunit II (RPB2) is necessary. In this study, we characterized 24 Trichoderma strains isolated from the apple rhizosphere. Significant variations were observed in the morpho-cultural characteristics of Trichoderma isolates and categorized them into four groups (I-IV) that were identified as T. harzianum complex, T. koningiopsis, T. viride, and T. hamatum, comprising 4, 4, 6 and 10 isolates, respectively. The concatenated sequence data set derived from the ITS region, TEF 1-α and RPB2 grouped 24 Trichoderma isolates into 03 independent clades. Specifically, the sequencing based on ITS region grouped them into four sub-clades, which were identified as T. harzianum complex, T. viride, T. asperelloides, and T. koningiopsis, comprising 4, 6, 5 and 7 isolates, respectively, and two independent lineages, each represented by a single isolate. In contrast, sequencing of the TEF 1-α and RPB2 genes grouped 24 Trichoderma isolates into two distinct clades and six sub-clades that were identified as T. asperelloides, T. asperellum, T. hamatum, T. viride, T. koningiopsis and T. harzianum complex, comprising 5, 5, 3, 4, 3 and 4 isolates, respectively. Thus, the final identification of 24 Trichoderma strains was achieved through a combined morpho-cultural and molecular approach, resulting in the identification of six species viz., T. koningiopsis, T. viride, T. asperellum, T. asperelloides, T. hamatum and T. harzianum complex comprising 5, 5, 3, 4, 3 and 4 isolates, respectively in accordance with the reference sequences retrieved from NCBI. Notably, to our knowledge, this is the first report of T. koningiopsis, T. viride, T. asperellum, T. asperelloides, and T. hamatum from the apple rhizosphere.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"26320"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12277453/pdf/","citationCount":"0","resultStr":"{\"title\":\"Morpho-cultural and molecular characterization of trichoderma species from the northwestern himalayan apple rhizosphere of India.\",\"authors\":\"Sana Surma, Sumaira H, Misbah M, M S Dar, Bilal A Padder, Imran Khan, Khalid Mushtaq, Maheen M, Sehla K, Asha Nabi, Mushtaq A Lone, Snober S Mir, Ozer Callis, Mehraj D Shah\",\"doi\":\"10.1038/s41598-025-12086-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant disease management based on pesticide use has numerous detrimental effects on health and the environment. As a result, the adoption of environment-friendly disease management options is the best alternative to pesticide use. Therefore, the identification of locally available bio-agents like Trichoderma species using morpho-cultural and molecular approaches specifically targeting the internal transcribed spacer (ITS) region, translation elongation factor 1-alpha (TEF 1-α) and RNA polymerase B subunit II (RPB2) is necessary. In this study, we characterized 24 Trichoderma strains isolated from the apple rhizosphere. Significant variations were observed in the morpho-cultural characteristics of Trichoderma isolates and categorized them into four groups (I-IV) that were identified as T. harzianum complex, T. koningiopsis, T. viride, and T. hamatum, comprising 4, 4, 6 and 10 isolates, respectively. The concatenated sequence data set derived from the ITS region, TEF 1-α and RPB2 grouped 24 Trichoderma isolates into 03 independent clades. Specifically, the sequencing based on ITS region grouped them into four sub-clades, which were identified as T. harzianum complex, T. viride, T. asperelloides, and T. koningiopsis, comprising 4, 6, 5 and 7 isolates, respectively, and two independent lineages, each represented by a single isolate. In contrast, sequencing of the TEF 1-α and RPB2 genes grouped 24 Trichoderma isolates into two distinct clades and six sub-clades that were identified as T. asperelloides, T. asperellum, T. hamatum, T. viride, T. koningiopsis and T. harzianum complex, comprising 5, 5, 3, 4, 3 and 4 isolates, respectively. Thus, the final identification of 24 Trichoderma strains was achieved through a combined morpho-cultural and molecular approach, resulting in the identification of six species viz., T. koningiopsis, T. viride, T. asperellum, T. asperelloides, T. hamatum and T. harzianum complex comprising 5, 5, 3, 4, 3 and 4 isolates, respectively in accordance with the reference sequences retrieved from NCBI. Notably, to our knowledge, this is the first report of T. koningiopsis, T. viride, T. asperellum, T. asperelloides, and T. hamatum from the apple rhizosphere.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"26320\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12277453/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-12086-4\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-12086-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Morpho-cultural and molecular characterization of trichoderma species from the northwestern himalayan apple rhizosphere of India.
Plant disease management based on pesticide use has numerous detrimental effects on health and the environment. As a result, the adoption of environment-friendly disease management options is the best alternative to pesticide use. Therefore, the identification of locally available bio-agents like Trichoderma species using morpho-cultural and molecular approaches specifically targeting the internal transcribed spacer (ITS) region, translation elongation factor 1-alpha (TEF 1-α) and RNA polymerase B subunit II (RPB2) is necessary. In this study, we characterized 24 Trichoderma strains isolated from the apple rhizosphere. Significant variations were observed in the morpho-cultural characteristics of Trichoderma isolates and categorized them into four groups (I-IV) that were identified as T. harzianum complex, T. koningiopsis, T. viride, and T. hamatum, comprising 4, 4, 6 and 10 isolates, respectively. The concatenated sequence data set derived from the ITS region, TEF 1-α and RPB2 grouped 24 Trichoderma isolates into 03 independent clades. Specifically, the sequencing based on ITS region grouped them into four sub-clades, which were identified as T. harzianum complex, T. viride, T. asperelloides, and T. koningiopsis, comprising 4, 6, 5 and 7 isolates, respectively, and two independent lineages, each represented by a single isolate. In contrast, sequencing of the TEF 1-α and RPB2 genes grouped 24 Trichoderma isolates into two distinct clades and six sub-clades that were identified as T. asperelloides, T. asperellum, T. hamatum, T. viride, T. koningiopsis and T. harzianum complex, comprising 5, 5, 3, 4, 3 and 4 isolates, respectively. Thus, the final identification of 24 Trichoderma strains was achieved through a combined morpho-cultural and molecular approach, resulting in the identification of six species viz., T. koningiopsis, T. viride, T. asperellum, T. asperelloides, T. hamatum and T. harzianum complex comprising 5, 5, 3, 4, 3 and 4 isolates, respectively in accordance with the reference sequences retrieved from NCBI. Notably, to our knowledge, this is the first report of T. koningiopsis, T. viride, T. asperellum, T. asperelloides, and T. hamatum from the apple rhizosphere.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.