Adil Sayyouri, Ahmed Bencherqui, Hanaa Mansouri, Hicham Karmouni, Hassane Moustabchir, Mhamed Sayyouri, Abderrahim Bourkane, Abdeljabbar Cherkaoui, S S Askar, Mohamed Abouhawwash
{"title":"基于parrot混沌优化器的改进优化,用于解决工程和医学图像分割中的复杂问题。","authors":"Adil Sayyouri, Ahmed Bencherqui, Hanaa Mansouri, Hicham Karmouni, Hassane Moustabchir, Mhamed Sayyouri, Abderrahim Bourkane, Abdeljabbar Cherkaoui, S S Askar, Mohamed Abouhawwash","doi":"10.1038/s41598-025-88745-3","DOIUrl":null,"url":null,"abstract":"<p><p>Metaheuristics, which are general-purpose algorithms, are commonly used to solve complex optimization problems. These algorithms manipulate multiple potential solutions to converge on the optimum, balancing the exploration and exploitation phases. A recent algorithm, the Parrot Optimizer (PO), is inspired by the behavior of domestic parrots to improve the diversity of solutions. However, while promising, the PO may encounter difficulties such as convergence to sub-optimal solutions or slow convergence speed. This paper proposes an improvement to the PO algorithm by integrating chaotic maps to solve complex optimization problems. The improved algorithm, called Chaotic Parrot Optimizer (CPO), is characterized by a better ability to avoid local minima and reach globally optimal solutions thanks to a dynamic diversification strategy based on chaotic maps. The effectiveness of the CPO algorithm has been rigorously evaluated through in-depth statistical analysis, using 23 benchmark functions as well as IEEE CEC 2019 and CEC 2020 benchmarks, covering a wide range of optimization challenges. The results show that CPO outperforms not only the original PO algorithm, but also six recent metaheuristics in terms of convergence speed and solution quality. In addition, it has been successfully applied to three complex engineering illustrating its ability to solve real-world, multi-constraint problems. Its integration with Kapur entropy also enabled precise segmentation of medical images, underlining its strong potential for critical biomedical applications. The CPO source code will be available on the Github account: adil.sayyouri@etu.uae.ac.ma after acceptance.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"26317"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12277423/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improved optimization based on parrot's chaotic optimizer for solving complex problems in engineering and medical image segmentation.\",\"authors\":\"Adil Sayyouri, Ahmed Bencherqui, Hanaa Mansouri, Hicham Karmouni, Hassane Moustabchir, Mhamed Sayyouri, Abderrahim Bourkane, Abdeljabbar Cherkaoui, S S Askar, Mohamed Abouhawwash\",\"doi\":\"10.1038/s41598-025-88745-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metaheuristics, which are general-purpose algorithms, are commonly used to solve complex optimization problems. These algorithms manipulate multiple potential solutions to converge on the optimum, balancing the exploration and exploitation phases. A recent algorithm, the Parrot Optimizer (PO), is inspired by the behavior of domestic parrots to improve the diversity of solutions. However, while promising, the PO may encounter difficulties such as convergence to sub-optimal solutions or slow convergence speed. This paper proposes an improvement to the PO algorithm by integrating chaotic maps to solve complex optimization problems. The improved algorithm, called Chaotic Parrot Optimizer (CPO), is characterized by a better ability to avoid local minima and reach globally optimal solutions thanks to a dynamic diversification strategy based on chaotic maps. The effectiveness of the CPO algorithm has been rigorously evaluated through in-depth statistical analysis, using 23 benchmark functions as well as IEEE CEC 2019 and CEC 2020 benchmarks, covering a wide range of optimization challenges. The results show that CPO outperforms not only the original PO algorithm, but also six recent metaheuristics in terms of convergence speed and solution quality. In addition, it has been successfully applied to three complex engineering illustrating its ability to solve real-world, multi-constraint problems. Its integration with Kapur entropy also enabled precise segmentation of medical images, underlining its strong potential for critical biomedical applications. The CPO source code will be available on the Github account: adil.sayyouri@etu.uae.ac.ma after acceptance.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"26317\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12277423/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-88745-3\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-88745-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Improved optimization based on parrot's chaotic optimizer for solving complex problems in engineering and medical image segmentation.
Metaheuristics, which are general-purpose algorithms, are commonly used to solve complex optimization problems. These algorithms manipulate multiple potential solutions to converge on the optimum, balancing the exploration and exploitation phases. A recent algorithm, the Parrot Optimizer (PO), is inspired by the behavior of domestic parrots to improve the diversity of solutions. However, while promising, the PO may encounter difficulties such as convergence to sub-optimal solutions or slow convergence speed. This paper proposes an improvement to the PO algorithm by integrating chaotic maps to solve complex optimization problems. The improved algorithm, called Chaotic Parrot Optimizer (CPO), is characterized by a better ability to avoid local minima and reach globally optimal solutions thanks to a dynamic diversification strategy based on chaotic maps. The effectiveness of the CPO algorithm has been rigorously evaluated through in-depth statistical analysis, using 23 benchmark functions as well as IEEE CEC 2019 and CEC 2020 benchmarks, covering a wide range of optimization challenges. The results show that CPO outperforms not only the original PO algorithm, but also six recent metaheuristics in terms of convergence speed and solution quality. In addition, it has been successfully applied to three complex engineering illustrating its ability to solve real-world, multi-constraint problems. Its integration with Kapur entropy also enabled precise segmentation of medical images, underlining its strong potential for critical biomedical applications. The CPO source code will be available on the Github account: adil.sayyouri@etu.uae.ac.ma after acceptance.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.