血管生成素-1和基于tie2的双细胞治疗增强了新生血管性视网膜疾病视网膜模拟模型的抗血管生成屏障功能。

IF 4.1 4区 医学 Q2 CELL & TISSUE ENGINEERING
Cha Yeon Kim, Cholong Jeong, Youngjin Han, Changmo Hwang
{"title":"血管生成素-1和基于tie2的双细胞治疗增强了新生血管性视网膜疾病视网膜模拟模型的抗血管生成屏障功能。","authors":"Cha Yeon Kim, Cholong Jeong, Youngjin Han, Changmo Hwang","doi":"10.1007/s13770-025-00739-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Choroidal neovascularization (CNV) is a major pathological process underlying retinal degenerative diseases such as wet age-related macular degeneration. While anti-VEGF therapies are widely used, limitations in response and vascular instability necessitate new approaches that promote both antiangiogenic effects and barrier restoration.</p><p><strong>Methods: </strong>A dual-cell therapy strategy was developed using human umbilical vein endothelial cells (HUVECs) genetically modified to overexpress Tie2 and mesenchymal stem cells (MSCs) engineered to secrete Angiopoietin-1 (Ang1). Antiangiogenic efficacy was evaluated using scratch assays, Transwell migration, and tube formation under VEGF stimulation. A retina-mimetic 2.5D co-culture system incorporating iPSC-derived RPE cells and mCherry-labeled ECs was used to assess endothelial invasion and epithelial barrier preservation.</p><p><strong>Results: </strong>Tie2/Ang1-modified cells significantly suppressed angiogenic behavior. Transwell migration showed OD595 crystal violet absorbance decreased from 3.54 ± 0.27 (control HUVEC) to 1.28 ± 0.08 (Tie2 overexpressed HUVEC in MSC Ang1 conditioned medium) under VEGF stimulation (p < 0.01). Tube formation area cultured in VEGF dropped from 1.25 ± 0.05 in control group to 0.74 ± 0.07 in Tie2 overexpressed group cultured with MSC-Ang1 conditioned medium (p < 0.01). In the retina-mimetic model, EC infiltration to the RPE monolayer across Transwell membrane decreased from 52.2 ± 8.5% in control HUVEC to 5.6 ± 4.3% with HUVEC-Tie2 + Ang1 conditioned medium under VEGF (p < 0.001).</p><p><strong>Conclusion: </strong>This study demonstrates that co-delivery of Ang1 and Tie2 via engineered ECs and MSCs synergistically inhibits VEGF-induced angiogenesis and choroidal migration while protecting epithelial barrier function. The retina-mimetic co-culture platform further validates the translational relevance of this dual-cell approach as a regenerative and antiangiogenic strategy in retinal vascular disease.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"877-893"},"PeriodicalIF":4.1000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12297198/pdf/","citationCount":"0","resultStr":"{\"title\":\"Angiopoietin-1 and Tie2-Based Dual Cell Therapy Enhances Antiangiogenic Barrier Function in a Retina-Mimetic Model for Neovascular Retinal Disease.\",\"authors\":\"Cha Yeon Kim, Cholong Jeong, Youngjin Han, Changmo Hwang\",\"doi\":\"10.1007/s13770-025-00739-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Choroidal neovascularization (CNV) is a major pathological process underlying retinal degenerative diseases such as wet age-related macular degeneration. While anti-VEGF therapies are widely used, limitations in response and vascular instability necessitate new approaches that promote both antiangiogenic effects and barrier restoration.</p><p><strong>Methods: </strong>A dual-cell therapy strategy was developed using human umbilical vein endothelial cells (HUVECs) genetically modified to overexpress Tie2 and mesenchymal stem cells (MSCs) engineered to secrete Angiopoietin-1 (Ang1). Antiangiogenic efficacy was evaluated using scratch assays, Transwell migration, and tube formation under VEGF stimulation. A retina-mimetic 2.5D co-culture system incorporating iPSC-derived RPE cells and mCherry-labeled ECs was used to assess endothelial invasion and epithelial barrier preservation.</p><p><strong>Results: </strong>Tie2/Ang1-modified cells significantly suppressed angiogenic behavior. Transwell migration showed OD595 crystal violet absorbance decreased from 3.54 ± 0.27 (control HUVEC) to 1.28 ± 0.08 (Tie2 overexpressed HUVEC in MSC Ang1 conditioned medium) under VEGF stimulation (p < 0.01). Tube formation area cultured in VEGF dropped from 1.25 ± 0.05 in control group to 0.74 ± 0.07 in Tie2 overexpressed group cultured with MSC-Ang1 conditioned medium (p < 0.01). In the retina-mimetic model, EC infiltration to the RPE monolayer across Transwell membrane decreased from 52.2 ± 8.5% in control HUVEC to 5.6 ± 4.3% with HUVEC-Tie2 + Ang1 conditioned medium under VEGF (p < 0.001).</p><p><strong>Conclusion: </strong>This study demonstrates that co-delivery of Ang1 and Tie2 via engineered ECs and MSCs synergistically inhibits VEGF-induced angiogenesis and choroidal migration while protecting epithelial barrier function. The retina-mimetic co-culture platform further validates the translational relevance of this dual-cell approach as a regenerative and antiangiogenic strategy in retinal vascular disease.</p>\",\"PeriodicalId\":23126,\"journal\":{\"name\":\"Tissue engineering and regenerative medicine\",\"volume\":\" \",\"pages\":\"877-893\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12297198/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering and regenerative medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13770-025-00739-4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering and regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13770-025-00739-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

背景:脉络膜新生血管(CNV)是视网膜退行性疾病(如湿性年龄相关性黄斑变性)的主要病理过程。虽然抗血管内皮生长因子治疗被广泛使用,但在反应和血管不稳定性方面的局限性需要新的方法来促进抗血管生成作用和屏障恢复。方法:采用基因修饰过表达Tie2的人脐静脉内皮细胞(HUVECs)和基因修饰分泌血管生成素-1 (Ang1)的间充质干细胞(MSCs)建立双细胞治疗策略。通过划痕试验、Transwell迁移和VEGF刺激下的管形成来评估抗血管生成效果。采用ipsc衍生的RPE细胞和mccherry标记的ECs共培养的2.5D模拟视网膜系统来评估内皮细胞的侵袭和上皮屏障的保存。结果:Tie2/ ang1修饰细胞明显抑制血管生成行为。Transwell迁移显示,在VEGF刺激下,OD595结晶紫吸光率从3.54±0.27(对照HUVEC)降至1.28±0.08 (MSC Ang1条件培养基中Tie2过表达HUVEC) (p)。结论:通过工程内皮细胞和MSCs共传递Ang1和Tie2,可协同抑制VEGF诱导的血管生成和脉络膜迁移,同时保护上皮屏障功能。模拟视网膜共培养平台进一步验证了这种双细胞方法作为视网膜血管疾病再生和抗血管生成策略的翻译相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Angiopoietin-1 and Tie2-Based Dual Cell Therapy Enhances Antiangiogenic Barrier Function in a Retina-Mimetic Model for Neovascular Retinal Disease.

Background: Choroidal neovascularization (CNV) is a major pathological process underlying retinal degenerative diseases such as wet age-related macular degeneration. While anti-VEGF therapies are widely used, limitations in response and vascular instability necessitate new approaches that promote both antiangiogenic effects and barrier restoration.

Methods: A dual-cell therapy strategy was developed using human umbilical vein endothelial cells (HUVECs) genetically modified to overexpress Tie2 and mesenchymal stem cells (MSCs) engineered to secrete Angiopoietin-1 (Ang1). Antiangiogenic efficacy was evaluated using scratch assays, Transwell migration, and tube formation under VEGF stimulation. A retina-mimetic 2.5D co-culture system incorporating iPSC-derived RPE cells and mCherry-labeled ECs was used to assess endothelial invasion and epithelial barrier preservation.

Results: Tie2/Ang1-modified cells significantly suppressed angiogenic behavior. Transwell migration showed OD595 crystal violet absorbance decreased from 3.54 ± 0.27 (control HUVEC) to 1.28 ± 0.08 (Tie2 overexpressed HUVEC in MSC Ang1 conditioned medium) under VEGF stimulation (p < 0.01). Tube formation area cultured in VEGF dropped from 1.25 ± 0.05 in control group to 0.74 ± 0.07 in Tie2 overexpressed group cultured with MSC-Ang1 conditioned medium (p < 0.01). In the retina-mimetic model, EC infiltration to the RPE monolayer across Transwell membrane decreased from 52.2 ± 8.5% in control HUVEC to 5.6 ± 4.3% with HUVEC-Tie2 + Ang1 conditioned medium under VEGF (p < 0.001).

Conclusion: This study demonstrates that co-delivery of Ang1 and Tie2 via engineered ECs and MSCs synergistically inhibits VEGF-induced angiogenesis and choroidal migration while protecting epithelial barrier function. The retina-mimetic co-culture platform further validates the translational relevance of this dual-cell approach as a regenerative and antiangiogenic strategy in retinal vascular disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue engineering and regenerative medicine
Tissue engineering and regenerative medicine CELL & TISSUE ENGINEERING-ENGINEERING, BIOMEDICAL
CiteScore
6.80
自引率
5.60%
发文量
83
审稿时长
6-12 weeks
期刊介绍: Tissue Engineering and Regenerative Medicine (Tissue Eng Regen Med, TERM), the official journal of the Korean Tissue Engineering and Regenerative Medicine Society, is a publication dedicated to providing research- based solutions to issues related to human diseases. This journal publishes articles that report substantial information and original findings on tissue engineering, medical biomaterials, cells therapy, stem cell biology and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信