不同土壤深度生物炭改良对玉米根系及生长指标的影响

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
S Gaurav, B Diptanu, Chandra M Mehta, K Prasann, E Nishihara, K Inubushi, S Sudo, S Hayashida, P K Patra, Tatiana Minkina, Vishnu D Rajput
{"title":"不同土壤深度生物炭改良对玉米根系及生长指标的影响","authors":"S Gaurav, B Diptanu, Chandra M Mehta, K Prasann, E Nishihara, K Inubushi, S Sudo, S Hayashida, P K Patra, Tatiana Minkina, Vishnu D Rajput","doi":"10.1038/s41598-025-09218-1","DOIUrl":null,"url":null,"abstract":"<p><p>Biochar application in the soil has shown its potential for improved plant growth, root structure, and nutrient availability. However, uncertainties remain regarding the optimal depth for biochar application and its interaction with roots, which significantly influence plant growth and development. This transparent rhizobox trial consists of five treatments: control treatment (T1) with recommended dose of fertilizer, and four biochar addition treatments with different depths viz. 5 (T2), 10 (T3), 15 (T4) and 20 cm (T5). FESEM, EDX-Spectroscopy was performed to elucidate the change in morphology and element distribution pattern of biochar after application in soil. Fresh biochar has 53.7% carbon and 19.9% oxygen, however, aged biochar shown 37.4% carbon and 36.4% oxygen content. The T5 exhibit the best outcomes, with the most significant increment in maize root traits over the control treatment (T1). In particular, T5 recorded a maximum improvement in root length (+ 48.2%), root volume (+ 42.7%) and root dry biomass (+ 56.7%) compared to the control treatment when biochar was applied at 20 cm soil depth. Shoot traits at 20 cm biochar incorporation revealed an increase in shoot fresh biomass (+ 23.1%), shoot dry biomass (+ 15%), leaf area (+ 50.5%) and number of leaves (+ 40.7%) as compared to the control treatment. As compared to the control, a considerable rise in soil nitrogen, phosphorus, and potassium was observed in biochar amendment at 20 cm depth, with the highest nitrogen in T5 (20.9%), phosphorus in T5 (103%), and the percentage increase in potassium in T5 (55.5%). One of the most consistently prevalent molecules examined by GC-MS was methyl stearate, a fatty acid ester detected in all five treatments. Methyl stearate content increased as the depth of biochar increased: T1 (10.26%), T2 (8.67%), T3 (12.40%), T4 (12.93%), and T5 (14.65%). Overall, the findings of this study suggest that uniform application of biochar in the top soil layer significantly enhances the above- and below-ground attributes of plants.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"26310"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12277442/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of biochar amendment at various soil depths on maize roots and growth indices.\",\"authors\":\"S Gaurav, B Diptanu, Chandra M Mehta, K Prasann, E Nishihara, K Inubushi, S Sudo, S Hayashida, P K Patra, Tatiana Minkina, Vishnu D Rajput\",\"doi\":\"10.1038/s41598-025-09218-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biochar application in the soil has shown its potential for improved plant growth, root structure, and nutrient availability. However, uncertainties remain regarding the optimal depth for biochar application and its interaction with roots, which significantly influence plant growth and development. This transparent rhizobox trial consists of five treatments: control treatment (T1) with recommended dose of fertilizer, and four biochar addition treatments with different depths viz. 5 (T2), 10 (T3), 15 (T4) and 20 cm (T5). FESEM, EDX-Spectroscopy was performed to elucidate the change in morphology and element distribution pattern of biochar after application in soil. Fresh biochar has 53.7% carbon and 19.9% oxygen, however, aged biochar shown 37.4% carbon and 36.4% oxygen content. The T5 exhibit the best outcomes, with the most significant increment in maize root traits over the control treatment (T1). In particular, T5 recorded a maximum improvement in root length (+ 48.2%), root volume (+ 42.7%) and root dry biomass (+ 56.7%) compared to the control treatment when biochar was applied at 20 cm soil depth. Shoot traits at 20 cm biochar incorporation revealed an increase in shoot fresh biomass (+ 23.1%), shoot dry biomass (+ 15%), leaf area (+ 50.5%) and number of leaves (+ 40.7%) as compared to the control treatment. As compared to the control, a considerable rise in soil nitrogen, phosphorus, and potassium was observed in biochar amendment at 20 cm depth, with the highest nitrogen in T5 (20.9%), phosphorus in T5 (103%), and the percentage increase in potassium in T5 (55.5%). One of the most consistently prevalent molecules examined by GC-MS was methyl stearate, a fatty acid ester detected in all five treatments. Methyl stearate content increased as the depth of biochar increased: T1 (10.26%), T2 (8.67%), T3 (12.40%), T4 (12.93%), and T5 (14.65%). Overall, the findings of this study suggest that uniform application of biochar in the top soil layer significantly enhances the above- and below-ground attributes of plants.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"26310\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12277442/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-09218-1\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-09218-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

生物炭在土壤中的应用已经显示出其改善植物生长、根系结构和养分有效性的潜力。然而,生物炭的最佳施用深度及其与根系的相互作用仍然存在不确定性,这对植物的生长发育有重大影响。本透明根箱试验包括5个处理:对照处理(T1)施用推荐剂量的肥料,以及4个不同深度的生物炭添加处理,即5 (T2)、10 (T3)、15 (T4)和20 cm (T5)。利用FESEM和edx光谱分析了生物炭在土壤中施用后的形态变化和元素分布规律。新鲜生物炭碳含量为53.7%,氧含量为19.9%,而陈年生物炭碳含量为37.4%,氧含量为36.4%。T5处理效果最好,玉米根系性状较对照处理(T1)增加最显著。特别是在土壤深度为20 cm时,T5处理的根长、根体积和根干生物量均比对照处理提高了48.2%、42.7%和56.7%。在20 cm炭处理下,茎部鲜生物量(+ 23.1%)、干生物量(+ 15%)、叶面积(+ 50.5%)和叶数(+ 40.7%)均比对照处理增加。与对照相比,20 cm深度生物炭处理土壤氮、磷、钾含量显著提高,其中T5氮含量最高(20.9%),T5磷含量最高(103%),T5钾含量最高(55.5%)。GC-MS检测的最普遍的分子之一是硬脂酸甲酯,这是一种脂肪酸酯,在所有五种处理中都检测到。硬脂酸甲酯含量随着生物炭深度的增加而增加:T1(10.26%)、T2(8.67%)、T3(12.40%)、T4(12.93%)和T5(14.65%)。总体而言,本研究结果表明,在表层均匀施用生物炭可显著提高植物的地上和地下属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of biochar amendment at various soil depths on maize roots and growth indices.

Biochar application in the soil has shown its potential for improved plant growth, root structure, and nutrient availability. However, uncertainties remain regarding the optimal depth for biochar application and its interaction with roots, which significantly influence plant growth and development. This transparent rhizobox trial consists of five treatments: control treatment (T1) with recommended dose of fertilizer, and four biochar addition treatments with different depths viz. 5 (T2), 10 (T3), 15 (T4) and 20 cm (T5). FESEM, EDX-Spectroscopy was performed to elucidate the change in morphology and element distribution pattern of biochar after application in soil. Fresh biochar has 53.7% carbon and 19.9% oxygen, however, aged biochar shown 37.4% carbon and 36.4% oxygen content. The T5 exhibit the best outcomes, with the most significant increment in maize root traits over the control treatment (T1). In particular, T5 recorded a maximum improvement in root length (+ 48.2%), root volume (+ 42.7%) and root dry biomass (+ 56.7%) compared to the control treatment when biochar was applied at 20 cm soil depth. Shoot traits at 20 cm biochar incorporation revealed an increase in shoot fresh biomass (+ 23.1%), shoot dry biomass (+ 15%), leaf area (+ 50.5%) and number of leaves (+ 40.7%) as compared to the control treatment. As compared to the control, a considerable rise in soil nitrogen, phosphorus, and potassium was observed in biochar amendment at 20 cm depth, with the highest nitrogen in T5 (20.9%), phosphorus in T5 (103%), and the percentage increase in potassium in T5 (55.5%). One of the most consistently prevalent molecules examined by GC-MS was methyl stearate, a fatty acid ester detected in all five treatments. Methyl stearate content increased as the depth of biochar increased: T1 (10.26%), T2 (8.67%), T3 (12.40%), T4 (12.93%), and T5 (14.65%). Overall, the findings of this study suggest that uniform application of biochar in the top soil layer significantly enhances the above- and below-ground attributes of plants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信