{"title":"政府官员们都很高兴。水果及其植物化学物质和复合草药产品作为预防电离辐射效应的辅助剂:可能用于临床。","authors":"Manjeshwar Shrinath Baliga","doi":"10.2174/0113895575362233250429114954","DOIUrl":null,"url":null,"abstract":"<p><p>In the management of solid tumors, ionizing radiation is a critical therapeutic modality, particularly when surgical intervention is impractical due to patient-related factors, such as compromised health or elevated mortality risk. However, its non-selective action can cause serious side effects that negate the therapeutic benefits. Efforts have thus been made to identify pharmacological agents that can selectively protect normal tissues from exposure to ionizing radiation. Seven decades of study, however, have shown that the desired success has not been achieved in obtaining an ideal radioprotective agent. Moreover, even at optimal doses, the FDA-approved drug, amifostine (also known as WR-2721 [S-2- (3-aminopropyl-amino) ethyl phosphorothioic acid], exhibits significant toxicity. An ideal radioprotective agent can also be beneficial in environments where individuals are exposed to prolonged, low-dose radiation. Considering this, there is a pressing need to develop methods of shielding cells and patients from the deleterious effects of radiation, and a non-toxic radioprotective drug can be useful in both clinical and occupational contexts. Studies have shown that the fruits of Emblica officinalis and its cardinal phytochemicals, such as gallic acid, ellagic acid, quercetin, geraniin, corilagin, and kaempferol, have been demonstrated to mitigate radiationinduced side effects. Research has also demonstrated that fruits can reduce the severity of radiationinduced mucositis in head and neck cancer patients undergoing curative treatment. Currently, there are no clinically effective non-toxic medications that are beneficial in mitigating radiation-induced ill effects. In lieu of this, for the first time, this review compiles the positive effects of fruits, phytochemicals, and their byproducts, chyawanprash and triphala, on radiation-induced damage, the mechanisms by which these effects occur, and the gaps that must be filled in order for future research to help people and the agricultural and nutraceutical industries.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emblica officinalis Gaertn. Fruits, their Phytochemicals, and Composite Herbal Products as Adjuncts in Preventing Ionizing Radiation Effects: Possible Use in Clinics.\",\"authors\":\"Manjeshwar Shrinath Baliga\",\"doi\":\"10.2174/0113895575362233250429114954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the management of solid tumors, ionizing radiation is a critical therapeutic modality, particularly when surgical intervention is impractical due to patient-related factors, such as compromised health or elevated mortality risk. However, its non-selective action can cause serious side effects that negate the therapeutic benefits. Efforts have thus been made to identify pharmacological agents that can selectively protect normal tissues from exposure to ionizing radiation. Seven decades of study, however, have shown that the desired success has not been achieved in obtaining an ideal radioprotective agent. Moreover, even at optimal doses, the FDA-approved drug, amifostine (also known as WR-2721 [S-2- (3-aminopropyl-amino) ethyl phosphorothioic acid], exhibits significant toxicity. An ideal radioprotective agent can also be beneficial in environments where individuals are exposed to prolonged, low-dose radiation. Considering this, there is a pressing need to develop methods of shielding cells and patients from the deleterious effects of radiation, and a non-toxic radioprotective drug can be useful in both clinical and occupational contexts. Studies have shown that the fruits of Emblica officinalis and its cardinal phytochemicals, such as gallic acid, ellagic acid, quercetin, geraniin, corilagin, and kaempferol, have been demonstrated to mitigate radiationinduced side effects. Research has also demonstrated that fruits can reduce the severity of radiationinduced mucositis in head and neck cancer patients undergoing curative treatment. Currently, there are no clinically effective non-toxic medications that are beneficial in mitigating radiation-induced ill effects. In lieu of this, for the first time, this review compiles the positive effects of fruits, phytochemicals, and their byproducts, chyawanprash and triphala, on radiation-induced damage, the mechanisms by which these effects occur, and the gaps that must be filled in order for future research to help people and the agricultural and nutraceutical industries.</p>\",\"PeriodicalId\":18548,\"journal\":{\"name\":\"Mini reviews in medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mini reviews in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113895575362233250429114954\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mini reviews in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113895575362233250429114954","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Emblica officinalis Gaertn. Fruits, their Phytochemicals, and Composite Herbal Products as Adjuncts in Preventing Ionizing Radiation Effects: Possible Use in Clinics.
In the management of solid tumors, ionizing radiation is a critical therapeutic modality, particularly when surgical intervention is impractical due to patient-related factors, such as compromised health or elevated mortality risk. However, its non-selective action can cause serious side effects that negate the therapeutic benefits. Efforts have thus been made to identify pharmacological agents that can selectively protect normal tissues from exposure to ionizing radiation. Seven decades of study, however, have shown that the desired success has not been achieved in obtaining an ideal radioprotective agent. Moreover, even at optimal doses, the FDA-approved drug, amifostine (also known as WR-2721 [S-2- (3-aminopropyl-amino) ethyl phosphorothioic acid], exhibits significant toxicity. An ideal radioprotective agent can also be beneficial in environments where individuals are exposed to prolonged, low-dose radiation. Considering this, there is a pressing need to develop methods of shielding cells and patients from the deleterious effects of radiation, and a non-toxic radioprotective drug can be useful in both clinical and occupational contexts. Studies have shown that the fruits of Emblica officinalis and its cardinal phytochemicals, such as gallic acid, ellagic acid, quercetin, geraniin, corilagin, and kaempferol, have been demonstrated to mitigate radiationinduced side effects. Research has also demonstrated that fruits can reduce the severity of radiationinduced mucositis in head and neck cancer patients undergoing curative treatment. Currently, there are no clinically effective non-toxic medications that are beneficial in mitigating radiation-induced ill effects. In lieu of this, for the first time, this review compiles the positive effects of fruits, phytochemicals, and their byproducts, chyawanprash and triphala, on radiation-induced damage, the mechanisms by which these effects occur, and the gaps that must be filled in order for future research to help people and the agricultural and nutraceutical industries.
期刊介绍:
The aim of Mini-Reviews in Medicinal Chemistry is to publish short reviews on the important recent developments in medicinal chemistry and allied disciplines.
Mini-Reviews in Medicinal Chemistry covers all areas of medicinal chemistry including developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, drug targets, and natural product research and structure-activity relationship studies.
Mini-Reviews in Medicinal Chemistry is an essential journal for every medicinal and pharmaceutical chemist who wishes to be kept informed and up-to-date with the latest and most important developments.