Ji Cao , Donglin Shi , Yong Cui , Haiyan Zhu , Haiping Liang , Qing Wei , Jianzhen Huang
{"title":"染料木素通过激活GPR30-Nrf2信号通路维持结肠炎小鼠肠道稳态。","authors":"Ji Cao , Donglin Shi , Yong Cui , Haiyan Zhu , Haiping Liang , Qing Wei , Jianzhen Huang","doi":"10.1016/j.jnutbio.2025.110036","DOIUrl":null,"url":null,"abstract":"<div><div>Genistein (GEN) is a natural polyphenolic compound widely present in leguminous plants, which has many biological functions such as anti-inflammatory and antioxidant activities, and has attracted attention in the treatment of inflammatory bowel disease (IBD). However, the molecular mechanism underlying the beneficial effects of GEN in IBD remains unclear. Here, we demonstrated that GEN enhanced the relative abundance of beneficial bacteria (e.g., <em>Akkermansia muciniphila</em>) and increased microbiota-derived short-chain fatty acids (SCFAs) levels in colitis mice. Further, the antibiotic cocktails (ABX) and fecal microbiota transplantation (FMT) experiments confirmed that gut microbiota at least partially mediated the anti-colitis effect of GEN. Interestingly, we found that GEN could also activate G protein-coupled receptor 30 (GPR30) and its downstream transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) in intestinal epithelial cells (IECs). The activation of the GPR30-Nrf2 signaling led to reduced reactive oxygen species (ROS) production, which consequently inhibited NLRP3 inflammasome activation and improved intestinal epithelial barrier dysfunction. In addition, studies using GPR30 knockout mice confirmed that GPR30 is crucial for inhibiting NLRP3 inflammasome activation and alleviating colitis. Collectively, our study unveils that GEN is an effective anti-inflammatory agent and suggests that both the gut microbiota and the GPR30-Nrf2 signaling pathway represent potential therapeutic targets for treating IBD.</div></div>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":"145 ","pages":"Article 110036"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genistein maintains intestinal homeostasis in colitis mice via activating GPR30-Nrf2 signaling pathway\",\"authors\":\"Ji Cao , Donglin Shi , Yong Cui , Haiyan Zhu , Haiping Liang , Qing Wei , Jianzhen Huang\",\"doi\":\"10.1016/j.jnutbio.2025.110036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Genistein (GEN) is a natural polyphenolic compound widely present in leguminous plants, which has many biological functions such as anti-inflammatory and antioxidant activities, and has attracted attention in the treatment of inflammatory bowel disease (IBD). However, the molecular mechanism underlying the beneficial effects of GEN in IBD remains unclear. Here, we demonstrated that GEN enhanced the relative abundance of beneficial bacteria (e.g., <em>Akkermansia muciniphila</em>) and increased microbiota-derived short-chain fatty acids (SCFAs) levels in colitis mice. Further, the antibiotic cocktails (ABX) and fecal microbiota transplantation (FMT) experiments confirmed that gut microbiota at least partially mediated the anti-colitis effect of GEN. Interestingly, we found that GEN could also activate G protein-coupled receptor 30 (GPR30) and its downstream transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) in intestinal epithelial cells (IECs). The activation of the GPR30-Nrf2 signaling led to reduced reactive oxygen species (ROS) production, which consequently inhibited NLRP3 inflammasome activation and improved intestinal epithelial barrier dysfunction. In addition, studies using GPR30 knockout mice confirmed that GPR30 is crucial for inhibiting NLRP3 inflammasome activation and alleviating colitis. Collectively, our study unveils that GEN is an effective anti-inflammatory agent and suggests that both the gut microbiota and the GPR30-Nrf2 signaling pathway represent potential therapeutic targets for treating IBD.</div></div>\",\"PeriodicalId\":16618,\"journal\":{\"name\":\"Journal of Nutritional Biochemistry\",\"volume\":\"145 \",\"pages\":\"Article 110036\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nutritional Biochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955286325001998\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955286325001998","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Genistein maintains intestinal homeostasis in colitis mice via activating GPR30-Nrf2 signaling pathway
Genistein (GEN) is a natural polyphenolic compound widely present in leguminous plants, which has many biological functions such as anti-inflammatory and antioxidant activities, and has attracted attention in the treatment of inflammatory bowel disease (IBD). However, the molecular mechanism underlying the beneficial effects of GEN in IBD remains unclear. Here, we demonstrated that GEN enhanced the relative abundance of beneficial bacteria (e.g., Akkermansia muciniphila) and increased microbiota-derived short-chain fatty acids (SCFAs) levels in colitis mice. Further, the antibiotic cocktails (ABX) and fecal microbiota transplantation (FMT) experiments confirmed that gut microbiota at least partially mediated the anti-colitis effect of GEN. Interestingly, we found that GEN could also activate G protein-coupled receptor 30 (GPR30) and its downstream transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) in intestinal epithelial cells (IECs). The activation of the GPR30-Nrf2 signaling led to reduced reactive oxygen species (ROS) production, which consequently inhibited NLRP3 inflammasome activation and improved intestinal epithelial barrier dysfunction. In addition, studies using GPR30 knockout mice confirmed that GPR30 is crucial for inhibiting NLRP3 inflammasome activation and alleviating colitis. Collectively, our study unveils that GEN is an effective anti-inflammatory agent and suggests that both the gut microbiota and the GPR30-Nrf2 signaling pathway represent potential therapeutic targets for treating IBD.
期刊介绍:
Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology.
Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.