基于混合变压器的卷积神经网络模型在基于scheimpflug的动态角膜变形视频中检测圆锥角膜。

IF 1.6 Q3 OPHTHALMOLOGY
Journal of Ophthalmic & Vision Research Pub Date : 2025-06-18 eCollection Date: 2025-01-01 DOI:10.18502/jovr.v20.17716
Hazem Abdelmotaal, Rossen Mihaylov Hazarbasanov, Ramin Salouti, M Hossein Nowroozzadeh, Suphi Taneri, Ali H Al-Timemy, Alexandru Lavric, Hidenori Takahashi, Siamak Yousefi
{"title":"基于混合变压器的卷积神经网络模型在基于scheimpflug的动态角膜变形视频中检测圆锥角膜。","authors":"Hazem Abdelmotaal, Rossen Mihaylov Hazarbasanov, Ramin Salouti, M Hossein Nowroozzadeh, Suphi Taneri, Ali H Al-Timemy, Alexandru Lavric, Hidenori Takahashi, Siamak Yousefi","doi":"10.18502/jovr.v20.17716","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To assess the performance of a hybrid Transformer-based convolutional neural network (CNN) model for automated detection of keratoconus in stand-alone Scheimpflug-based dynamic corneal deformation videos (DCDVs).</p><p><strong>Methods: </strong>We used transfer learning for feature extraction from DCDVs. These feature maps were augmented by self-attention to model long-range dependencies before classification to identify keratoconus directly. Model performance was evaluated by objective accuracy metrics based on DCDVs from two independent cohorts with 275 and 546 subjects.</p><p><strong>Results: </strong>The model's sensitivity and specificity in detecting keratoconus were 93% and 84%, respectively. The AUC of the keratoconus probability score based on the external validation database was 0.97.</p><p><strong>Conclusion: </strong>The hybrid Transformer-based model was highly sensitive and specific in discriminating normal from keratoconic eyes using DCDV(s) at levels that may prove useful in clinical practice.</p>","PeriodicalId":16586,"journal":{"name":"Journal of Ophthalmic & Vision Research","volume":"20 ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12260730/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Hybrid Transformers-based Convolutional Neural Network Model for Keratoconus Detection in Scheimpflug-based Dynamic Corneal Deformation Videos.\",\"authors\":\"Hazem Abdelmotaal, Rossen Mihaylov Hazarbasanov, Ramin Salouti, M Hossein Nowroozzadeh, Suphi Taneri, Ali H Al-Timemy, Alexandru Lavric, Hidenori Takahashi, Siamak Yousefi\",\"doi\":\"10.18502/jovr.v20.17716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To assess the performance of a hybrid Transformer-based convolutional neural network (CNN) model for automated detection of keratoconus in stand-alone Scheimpflug-based dynamic corneal deformation videos (DCDVs).</p><p><strong>Methods: </strong>We used transfer learning for feature extraction from DCDVs. These feature maps were augmented by self-attention to model long-range dependencies before classification to identify keratoconus directly. Model performance was evaluated by objective accuracy metrics based on DCDVs from two independent cohorts with 275 and 546 subjects.</p><p><strong>Results: </strong>The model's sensitivity and specificity in detecting keratoconus were 93% and 84%, respectively. The AUC of the keratoconus probability score based on the external validation database was 0.97.</p><p><strong>Conclusion: </strong>The hybrid Transformer-based model was highly sensitive and specific in discriminating normal from keratoconic eyes using DCDV(s) at levels that may prove useful in clinical practice.</p>\",\"PeriodicalId\":16586,\"journal\":{\"name\":\"Journal of Ophthalmic & Vision Research\",\"volume\":\"20 \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12260730/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ophthalmic & Vision Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18502/jovr.v20.17716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ophthalmic & Vision Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/jovr.v20.17716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:评估基于混合变压器的卷积神经网络(CNN)模型在独立的基于scheimpflug的动态角膜变形视频(DCDVs)中自动检测圆锥角膜的性能。方法:采用迁移学习方法对dcdv进行特征提取。在分类之前,这些特征映射通过自我关注来增强模型的远程依赖关系,从而直接识别圆锥角膜。通过基于两个独立队列(分别有275和546名受试者)的dcv的客观准确性指标来评估模型的性能。结果:该模型检测圆锥角膜的敏感性为93%,特异性为84%。基于外部验证数据库的圆锥角膜概率评分的AUC为0.97。结论:基于混合transformer的模型在使用DCDV(s)水平区分正常眼和角膜斜视眼方面具有高度的敏感性和特异性,可用于临床实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hybrid Transformers-based Convolutional Neural Network Model for Keratoconus Detection in Scheimpflug-based Dynamic Corneal Deformation Videos.

Purpose: To assess the performance of a hybrid Transformer-based convolutional neural network (CNN) model for automated detection of keratoconus in stand-alone Scheimpflug-based dynamic corneal deformation videos (DCDVs).

Methods: We used transfer learning for feature extraction from DCDVs. These feature maps were augmented by self-attention to model long-range dependencies before classification to identify keratoconus directly. Model performance was evaluated by objective accuracy metrics based on DCDVs from two independent cohorts with 275 and 546 subjects.

Results: The model's sensitivity and specificity in detecting keratoconus were 93% and 84%, respectively. The AUC of the keratoconus probability score based on the external validation database was 0.97.

Conclusion: The hybrid Transformer-based model was highly sensitive and specific in discriminating normal from keratoconic eyes using DCDV(s) at levels that may prove useful in clinical practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
63
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信