Owen Leddy, Yuko Yuki, Mary Carrington, Bryan D Bryson, Forest M White
{"title":"免疫肽组学研究中针对感染特异性肽的疫苗靶点发现。","authors":"Owen Leddy, Yuko Yuki, Mary Carrington, Bryan D Bryson, Forest M White","doi":"10.1084/jem.20250444","DOIUrl":null,"url":null,"abstract":"<p><p>Vaccine-elicited T cell responses can contribute to immune protection against emerging infectious disease risks such as antimicrobial-resistant (AMR) microbial pathogens and viruses with pandemic potential, but rapidly identifying appropriate targets for T cell priming vaccines remains challenging. Mass spectrometry (MS) analysis of peptides presented on MHCs can identify potential targets for protective T cell responses in a proteome-wide manner. However, pathogen-derived peptides are outnumbered by self-peptides in the MHC repertoire and may be missed in untargeted MS analyses. Here, we present a novel approach, termed PathMHC, that uses computational analysis of untargeted MS data followed by targeted MS to discover novel pathogen-derived MHC peptides more efficiently than untargeted methods alone. We applied this workflow to identify MHC peptides derived from multiple microbes, including potential vaccine targets presented on MHC-I by human dendritic cells infected with Mycobacterium tuberculosis (Mtb), finding that all Mtb peptides detected in the MHC-I repertoire derived from proteins exported by type VII secretion systems. PathMHC will facilitate antigen discovery campaigns for vaccine development.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"222 10","pages":""},"PeriodicalIF":12.6000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12279011/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeting infection-specific peptides in immunopeptidomics studies for vaccine target discovery.\",\"authors\":\"Owen Leddy, Yuko Yuki, Mary Carrington, Bryan D Bryson, Forest M White\",\"doi\":\"10.1084/jem.20250444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vaccine-elicited T cell responses can contribute to immune protection against emerging infectious disease risks such as antimicrobial-resistant (AMR) microbial pathogens and viruses with pandemic potential, but rapidly identifying appropriate targets for T cell priming vaccines remains challenging. Mass spectrometry (MS) analysis of peptides presented on MHCs can identify potential targets for protective T cell responses in a proteome-wide manner. However, pathogen-derived peptides are outnumbered by self-peptides in the MHC repertoire and may be missed in untargeted MS analyses. Here, we present a novel approach, termed PathMHC, that uses computational analysis of untargeted MS data followed by targeted MS to discover novel pathogen-derived MHC peptides more efficiently than untargeted methods alone. We applied this workflow to identify MHC peptides derived from multiple microbes, including potential vaccine targets presented on MHC-I by human dendritic cells infected with Mycobacterium tuberculosis (Mtb), finding that all Mtb peptides detected in the MHC-I repertoire derived from proteins exported by type VII secretion systems. PathMHC will facilitate antigen discovery campaigns for vaccine development.</p>\",\"PeriodicalId\":15760,\"journal\":{\"name\":\"Journal of Experimental Medicine\",\"volume\":\"222 10\",\"pages\":\"\"},\"PeriodicalIF\":12.6000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12279011/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1084/jem.20250444\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20250444","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Targeting infection-specific peptides in immunopeptidomics studies for vaccine target discovery.
Vaccine-elicited T cell responses can contribute to immune protection against emerging infectious disease risks such as antimicrobial-resistant (AMR) microbial pathogens and viruses with pandemic potential, but rapidly identifying appropriate targets for T cell priming vaccines remains challenging. Mass spectrometry (MS) analysis of peptides presented on MHCs can identify potential targets for protective T cell responses in a proteome-wide manner. However, pathogen-derived peptides are outnumbered by self-peptides in the MHC repertoire and may be missed in untargeted MS analyses. Here, we present a novel approach, termed PathMHC, that uses computational analysis of untargeted MS data followed by targeted MS to discover novel pathogen-derived MHC peptides more efficiently than untargeted methods alone. We applied this workflow to identify MHC peptides derived from multiple microbes, including potential vaccine targets presented on MHC-I by human dendritic cells infected with Mycobacterium tuberculosis (Mtb), finding that all Mtb peptides detected in the MHC-I repertoire derived from proteins exported by type VII secretion systems. PathMHC will facilitate antigen discovery campaigns for vaccine development.
期刊介绍:
Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field.
Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions.
Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.