住院患者中28天COVID-19严重程度和死亡率的基线预测因素:来自IMPACC研究的结果

IF 3.1 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Frontiers in Medicine Pub Date : 2025-07-04 eCollection Date: 2025-01-01 DOI:10.3389/fmed.2025.1604388
Jintong Hou, Benjamin Haslund-Gourley, Joann Diray-Arce, Annmarie Hoch, Nadine Rouphael, Patrice M Becker, Alison D Augustine, Al Ozonoff, Leying Guan, Steven H Kleinstein, Bjoern Peters, Elaine Reed, Matt Altman, Charles R Langelier, Holden Maecker, Seunghee Kim, Ruth R Montgomery, Florian Krammer, Michael Wilson, Walter Eckalbar, Steven E Bosinger, Ofer Levy, Hanno Steen, Lindsey B Rosen, Lindsey R Baden, Esther Melamed, Lauren I R Ehrlich, Grace A McComsey, Rafick P Sekaly, Joanna Schaenman, Albert C Shaw, David A Hafler, David B Corry, Farrah Kheradmand, Mark A Atkinson, Scott C Brakenridge, Nelson I Agudelo Higuita, Jordan P Metcalf, Catherine L Hough, William B Messer, Bali Pulendran, Kari C Nadeau, Mark M Davis, Ana Fernandez Sesma, Viviana Simon, Monica Kraft, Chris Bime, Carolyn S Calfee, David J Erle, Impacc Network, Lucy F Robinson, Charles B Cairns, Elias K Haddad, Mary Ann Comunale
{"title":"住院患者中28天COVID-19严重程度和死亡率的基线预测因素:来自IMPACC研究的结果","authors":"Jintong Hou, Benjamin Haslund-Gourley, Joann Diray-Arce, Annmarie Hoch, Nadine Rouphael, Patrice M Becker, Alison D Augustine, Al Ozonoff, Leying Guan, Steven H Kleinstein, Bjoern Peters, Elaine Reed, Matt Altman, Charles R Langelier, Holden Maecker, Seunghee Kim, Ruth R Montgomery, Florian Krammer, Michael Wilson, Walter Eckalbar, Steven E Bosinger, Ofer Levy, Hanno Steen, Lindsey B Rosen, Lindsey R Baden, Esther Melamed, Lauren I R Ehrlich, Grace A McComsey, Rafick P Sekaly, Joanna Schaenman, Albert C Shaw, David A Hafler, David B Corry, Farrah Kheradmand, Mark A Atkinson, Scott C Brakenridge, Nelson I Agudelo Higuita, Jordan P Metcalf, Catherine L Hough, William B Messer, Bali Pulendran, Kari C Nadeau, Mark M Davis, Ana Fernandez Sesma, Viviana Simon, Monica Kraft, Chris Bime, Carolyn S Calfee, David J Erle, Impacc Network, Lucy F Robinson, Charles B Cairns, Elias K Haddad, Mary Ann Comunale","doi":"10.3389/fmed.2025.1604388","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The coronavirus disease 2019 (COVID-19) pandemic threatened public health and placed a significant burden on medical resources. The Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) study collected clinical, demographic, blood cytometry, serum receptor-binding domain (RBD) antibody titers, metabolomics, targeted proteomics, nasal metagenomics, Olink, nasal viral load, autoantibody, SARS-CoV-2 antibody titers, and nasal and peripheral blood mononuclear cell (PBMC) transcriptomics data from patients hospitalized with COVID-19. The aim of this study is to select baseline biomarkers and build predictive models for 28-day in-hospital COVID-19 severity and mortality with most predictive variables while prioritizing routinely collected variables.</p><p><strong>Methods: </strong>We analyzed 1102 hospitalized COVID-19 participants. We used the lasso and forward selection to select top predictors for severity and mortality, and built predictive models based on balanced training data. We then validated the models on testing data.</p><p><strong>Results: </strong>Severity was best predicted by the baseline SpO<sub>2</sub>/FiO<sub>2</sub> ratio obtained from COVID-19 patients (test AUC: 0.874). Adding patient age, BMI, FGF23, IL-6, and LTA to the disease severity prediction model improves the test AUC by an additional 3%. The clinical mortality prediction model using SpO<sub>2</sub>/FiO<sub>2</sub> ratio, age, and BMI resulted in a test AUC of 0.83. Adding laboratory results such as TNFRSF11B and plasma ribitol count increased the prediction model by 3.5%. The severity and mortality prediction models developed outperform the Sequential Organ Failure Assessment (SOFA) score among inpatients and perform similarly to the SOFA score among ICU patients.</p><p><strong>Conclusion: </strong>This study identifies clinical data and laboratory biomarkers of COVID-19 severity and mortality using machine learning models. The study identifies SpO<sub>2</sub>/FiO<sub>2</sub> ratio to be the most important predictor for both severity and mortality. Several biomarkers were identified to modestly improve the predictions. The results also provide a baseline of SARS-CoV-2 infection during the early stages of the coronavirus emergence and can serve as a baseline for future studies that inform how the genetic evolution of the coronavirus affects the host response to new variants.</p>","PeriodicalId":12488,"journal":{"name":"Frontiers in Medicine","volume":"12 ","pages":"1604388"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12271175/pdf/","citationCount":"0","resultStr":"{\"title\":\"Baseline predictors for 28-day COVID-19 severity and mortality among hospitalized patients: results from the IMPACC study.\",\"authors\":\"Jintong Hou, Benjamin Haslund-Gourley, Joann Diray-Arce, Annmarie Hoch, Nadine Rouphael, Patrice M Becker, Alison D Augustine, Al Ozonoff, Leying Guan, Steven H Kleinstein, Bjoern Peters, Elaine Reed, Matt Altman, Charles R Langelier, Holden Maecker, Seunghee Kim, Ruth R Montgomery, Florian Krammer, Michael Wilson, Walter Eckalbar, Steven E Bosinger, Ofer Levy, Hanno Steen, Lindsey B Rosen, Lindsey R Baden, Esther Melamed, Lauren I R Ehrlich, Grace A McComsey, Rafick P Sekaly, Joanna Schaenman, Albert C Shaw, David A Hafler, David B Corry, Farrah Kheradmand, Mark A Atkinson, Scott C Brakenridge, Nelson I Agudelo Higuita, Jordan P Metcalf, Catherine L Hough, William B Messer, Bali Pulendran, Kari C Nadeau, Mark M Davis, Ana Fernandez Sesma, Viviana Simon, Monica Kraft, Chris Bime, Carolyn S Calfee, David J Erle, Impacc Network, Lucy F Robinson, Charles B Cairns, Elias K Haddad, Mary Ann Comunale\",\"doi\":\"10.3389/fmed.2025.1604388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The coronavirus disease 2019 (COVID-19) pandemic threatened public health and placed a significant burden on medical resources. The Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) study collected clinical, demographic, blood cytometry, serum receptor-binding domain (RBD) antibody titers, metabolomics, targeted proteomics, nasal metagenomics, Olink, nasal viral load, autoantibody, SARS-CoV-2 antibody titers, and nasal and peripheral blood mononuclear cell (PBMC) transcriptomics data from patients hospitalized with COVID-19. The aim of this study is to select baseline biomarkers and build predictive models for 28-day in-hospital COVID-19 severity and mortality with most predictive variables while prioritizing routinely collected variables.</p><p><strong>Methods: </strong>We analyzed 1102 hospitalized COVID-19 participants. We used the lasso and forward selection to select top predictors for severity and mortality, and built predictive models based on balanced training data. We then validated the models on testing data.</p><p><strong>Results: </strong>Severity was best predicted by the baseline SpO<sub>2</sub>/FiO<sub>2</sub> ratio obtained from COVID-19 patients (test AUC: 0.874). Adding patient age, BMI, FGF23, IL-6, and LTA to the disease severity prediction model improves the test AUC by an additional 3%. The clinical mortality prediction model using SpO<sub>2</sub>/FiO<sub>2</sub> ratio, age, and BMI resulted in a test AUC of 0.83. Adding laboratory results such as TNFRSF11B and plasma ribitol count increased the prediction model by 3.5%. The severity and mortality prediction models developed outperform the Sequential Organ Failure Assessment (SOFA) score among inpatients and perform similarly to the SOFA score among ICU patients.</p><p><strong>Conclusion: </strong>This study identifies clinical data and laboratory biomarkers of COVID-19 severity and mortality using machine learning models. The study identifies SpO<sub>2</sub>/FiO<sub>2</sub> ratio to be the most important predictor for both severity and mortality. Several biomarkers were identified to modestly improve the predictions. The results also provide a baseline of SARS-CoV-2 infection during the early stages of the coronavirus emergence and can serve as a baseline for future studies that inform how the genetic evolution of the coronavirus affects the host response to new variants.</p>\",\"PeriodicalId\":12488,\"journal\":{\"name\":\"Frontiers in Medicine\",\"volume\":\"12 \",\"pages\":\"1604388\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12271175/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fmed.2025.1604388\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fmed.2025.1604388","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

2019冠状病毒病(COVID-19)大流行威胁着公共卫生,给医疗资源带来了重大负担。COVID-19队列免疫表型评估(IMPACC)研究收集了COVID-19住院患者的临床、人口统计学、血液细胞学、血清受体结合域(RBD)抗体滴度、代谢组学、靶向蛋白质组学、鼻元基因组学、Olink、鼻病毒载量、自身抗体、SARS-CoV-2抗体滴度以及鼻和外周血单个核细胞(PBMC)转录组学数据。本研究的目的是选择基线生物标志物,利用大多数预测变量建立住院28天COVID-19严重程度和死亡率的预测模型,同时优先考虑常规收集的变量。方法:对1102例住院的COVID-19患者进行分析。我们使用套索和正向选择来选择严重程度和死亡率的最佳预测因子,并建立基于平衡训练数据的预测模型。然后,我们在测试数据上验证了模型。结果:从COVID-19患者获得的基线SpO2/FiO2比最能预测严重程度(测试AUC: 0.874)。将患者年龄、BMI、FGF23、IL-6和LTA添加到疾病严重程度预测模型中,可将测试AUC提高3%。使用SpO2/FiO2比值、年龄和BMI的临床死亡率预测模型的检验AUC为0.83。加入TNFRSF11B和血浆利比醇计数等实验室结果使预测模型提高3.5%。所建立的严重程度和死亡率预测模型在住院患者中的表现优于顺序器官衰竭评估(SOFA)评分,在ICU患者中的表现与SOFA评分相似。结论:本研究使用机器学习模型确定了COVID-19严重程度和死亡率的临床数据和实验室生物标志物。该研究确定SpO2/FiO2比率是严重程度和死亡率的最重要预测因素。确定了几个生物标志物来适度改善预测。这些结果还提供了冠状病毒出现早期阶段SARS-CoV-2感染的基线,并可作为未来研究的基线,以了解冠状病毒的遗传进化如何影响宿主对新变种的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Baseline predictors for 28-day COVID-19 severity and mortality among hospitalized patients: results from the IMPACC study.

Introduction: The coronavirus disease 2019 (COVID-19) pandemic threatened public health and placed a significant burden on medical resources. The Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) study collected clinical, demographic, blood cytometry, serum receptor-binding domain (RBD) antibody titers, metabolomics, targeted proteomics, nasal metagenomics, Olink, nasal viral load, autoantibody, SARS-CoV-2 antibody titers, and nasal and peripheral blood mononuclear cell (PBMC) transcriptomics data from patients hospitalized with COVID-19. The aim of this study is to select baseline biomarkers and build predictive models for 28-day in-hospital COVID-19 severity and mortality with most predictive variables while prioritizing routinely collected variables.

Methods: We analyzed 1102 hospitalized COVID-19 participants. We used the lasso and forward selection to select top predictors for severity and mortality, and built predictive models based on balanced training data. We then validated the models on testing data.

Results: Severity was best predicted by the baseline SpO2/FiO2 ratio obtained from COVID-19 patients (test AUC: 0.874). Adding patient age, BMI, FGF23, IL-6, and LTA to the disease severity prediction model improves the test AUC by an additional 3%. The clinical mortality prediction model using SpO2/FiO2 ratio, age, and BMI resulted in a test AUC of 0.83. Adding laboratory results such as TNFRSF11B and plasma ribitol count increased the prediction model by 3.5%. The severity and mortality prediction models developed outperform the Sequential Organ Failure Assessment (SOFA) score among inpatients and perform similarly to the SOFA score among ICU patients.

Conclusion: This study identifies clinical data and laboratory biomarkers of COVID-19 severity and mortality using machine learning models. The study identifies SpO2/FiO2 ratio to be the most important predictor for both severity and mortality. Several biomarkers were identified to modestly improve the predictions. The results also provide a baseline of SARS-CoV-2 infection during the early stages of the coronavirus emergence and can serve as a baseline for future studies that inform how the genetic evolution of the coronavirus affects the host response to new variants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Medicine
Frontiers in Medicine Medicine-General Medicine
CiteScore
5.10
自引率
5.10%
发文量
3710
审稿时长
12 weeks
期刊介绍: Frontiers in Medicine publishes rigorously peer-reviewed research linking basic research to clinical practice and patient care, as well as translating scientific advances into new therapies and diagnostic tools. Led by an outstanding Editorial Board of international experts, this multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide. In addition to papers that provide a link between basic research and clinical practice, a particular emphasis is given to studies that are directly relevant to patient care. In this spirit, the journal publishes the latest research results and medical knowledge that facilitate the translation of scientific advances into new therapies or diagnostic tools. The full listing of the Specialty Sections represented by Frontiers in Medicine is as listed below. As well as the established medical disciplines, Frontiers in Medicine is launching new sections that together will facilitate - the use of patient-reported outcomes under real world conditions - the exploitation of big data and the use of novel information and communication tools in the assessment of new medicines - the scientific bases for guidelines and decisions from regulatory authorities - access to medicinal products and medical devices worldwide - addressing the grand health challenges around the world
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信