改善三阴性乳腺癌的治疗策略:DKC1抑制和紫杉醇的协同作用。

IF 4.4 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Expert Opinion on Therapeutic Targets Pub Date : 2025-07-01 Epub Date: 2025-07-27 DOI:10.1080/14728222.2025.2537416
Roman Vilarullo, María Del Pilar Casco, María Candelaria Mares Ahlers, Vanesa Gottifredi, Lara Balcone, Julian Maggio, Diego Luis Mengual Gomez, Daniel Eduardo Gomez, Romina Gabriela Armando
{"title":"改善三阴性乳腺癌的治疗策略:DKC1抑制和紫杉醇的协同作用。","authors":"Roman Vilarullo, María Del Pilar Casco, María Candelaria Mares Ahlers, Vanesa Gottifredi, Lara Balcone, Julian Maggio, Diego Luis Mengual Gomez, Daniel Eduardo Gomez, Romina Gabriela Armando","doi":"10.1080/14728222.2025.2537416","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Paclitaxel (PTX) is a standard treatment for triple-negative breast cancer (TNBC), but its effectiveness is often compromised by toxicity at therapeutic doses. Dyskerin pseudouridine synthase 1 (DKC1), a telomerase subunit, is overexpressed in TNBC and associated with poor prognosis. This study investigates whether combining PTX with R1D2-10, a novel DKC1 inhibitor developed by our group, enhances cytotoxicity while reducing required PTX dosages.</p><p><strong>Research design and methods: </strong><i>In vitro</i> assays were conducted using MDA-MB-231 and MDA-MB-468 TNBC cell lines, treated with R1D2-10, PTX or their combination. Cytotoxicity, drug synergy, clonogenic capacity, cell cycle distribution, apoptosis, and DNA damage markers were evaluated to assess efficacy and mechanism of action.</p><p><strong>Results: </strong>The combination demonstrated synergistic effects, showing dose-dependent cytotoxicity and achieving a Dose Reduction Index (DRI) exceeding 3. Furthermore, the treatment significantly reduced colony formation and induced a rise in cell cycle population, both at the G2/M and Sub-G1 phases. These effects are supported by increased apoptosis and gene expression markers for cell cycle arrest, without evidence of replication stress or DNA damage.</p><p><strong>Conclusions: </strong>Combining R1D2-10 with PTX may provide an effective therapeutic strategy to reduce dose-related toxicity while enhancing chemotherapy effects in TNBC. Further, <i>in</i> <i>vivo</i> studies are needed to validate these findings.</p>","PeriodicalId":12185,"journal":{"name":"Expert Opinion on Therapeutic Targets","volume":" ","pages":"491-504"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving therapeutic strategies for triple-negative breast cancer: synergistic effects of DKC1 inhibition and paclitaxel.\",\"authors\":\"Roman Vilarullo, María Del Pilar Casco, María Candelaria Mares Ahlers, Vanesa Gottifredi, Lara Balcone, Julian Maggio, Diego Luis Mengual Gomez, Daniel Eduardo Gomez, Romina Gabriela Armando\",\"doi\":\"10.1080/14728222.2025.2537416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Paclitaxel (PTX) is a standard treatment for triple-negative breast cancer (TNBC), but its effectiveness is often compromised by toxicity at therapeutic doses. Dyskerin pseudouridine synthase 1 (DKC1), a telomerase subunit, is overexpressed in TNBC and associated with poor prognosis. This study investigates whether combining PTX with R1D2-10, a novel DKC1 inhibitor developed by our group, enhances cytotoxicity while reducing required PTX dosages.</p><p><strong>Research design and methods: </strong><i>In vitro</i> assays were conducted using MDA-MB-231 and MDA-MB-468 TNBC cell lines, treated with R1D2-10, PTX or their combination. Cytotoxicity, drug synergy, clonogenic capacity, cell cycle distribution, apoptosis, and DNA damage markers were evaluated to assess efficacy and mechanism of action.</p><p><strong>Results: </strong>The combination demonstrated synergistic effects, showing dose-dependent cytotoxicity and achieving a Dose Reduction Index (DRI) exceeding 3. Furthermore, the treatment significantly reduced colony formation and induced a rise in cell cycle population, both at the G2/M and Sub-G1 phases. These effects are supported by increased apoptosis and gene expression markers for cell cycle arrest, without evidence of replication stress or DNA damage.</p><p><strong>Conclusions: </strong>Combining R1D2-10 with PTX may provide an effective therapeutic strategy to reduce dose-related toxicity while enhancing chemotherapy effects in TNBC. Further, <i>in</i> <i>vivo</i> studies are needed to validate these findings.</p>\",\"PeriodicalId\":12185,\"journal\":{\"name\":\"Expert Opinion on Therapeutic Targets\",\"volume\":\" \",\"pages\":\"491-504\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Opinion on Therapeutic Targets\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/14728222.2025.2537416\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Therapeutic Targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14728222.2025.2537416","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

背景:紫杉醇(PTX)是三阴性乳腺癌(TNBC)的标准治疗方法,但其疗效往往受到治疗剂量毒性的影响。Dyskerin伪尿嘧啶合成酶1 (DKC1)是端粒酶亚基,在TNBC中过度表达并与不良预后相关。本研究探讨PTX与R1D2-10(我们小组开发的一种新型DKC1抑制剂)联合使用是否能增强细胞毒性,同时减少所需的PTX剂量。研究设计和方法:采用MDA-MB-231和MDA-MB-468 TNBC细胞系,分别用R1D2-10、PTX或其联合处理进行体外检测。对细胞毒性、药物协同作用、克隆生成能力、细胞周期分布、细胞凋亡和DNA损伤标志物进行评估,以评估其疗效和作用机制。结果:联合用药具有协同作用,呈剂量依赖性细胞毒性,剂量减少指数(DRI)超过3。此外,在G2/M期和Sub-G1期,处理显著减少了集落形成,诱导细胞周期数量增加。细胞凋亡和细胞周期阻滞的基因表达标志物的增加支持了这些作用,而没有证据表明复制应激或DNA损伤。结论:R1D2-10联合PTX可有效降低TNBC的剂量相关毒性,同时增强化疗效果。需要进一步的体内研究来验证这些发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving therapeutic strategies for triple-negative breast cancer: synergistic effects of DKC1 inhibition and paclitaxel.

Background: Paclitaxel (PTX) is a standard treatment for triple-negative breast cancer (TNBC), but its effectiveness is often compromised by toxicity at therapeutic doses. Dyskerin pseudouridine synthase 1 (DKC1), a telomerase subunit, is overexpressed in TNBC and associated with poor prognosis. This study investigates whether combining PTX with R1D2-10, a novel DKC1 inhibitor developed by our group, enhances cytotoxicity while reducing required PTX dosages.

Research design and methods: In vitro assays were conducted using MDA-MB-231 and MDA-MB-468 TNBC cell lines, treated with R1D2-10, PTX or their combination. Cytotoxicity, drug synergy, clonogenic capacity, cell cycle distribution, apoptosis, and DNA damage markers were evaluated to assess efficacy and mechanism of action.

Results: The combination demonstrated synergistic effects, showing dose-dependent cytotoxicity and achieving a Dose Reduction Index (DRI) exceeding 3. Furthermore, the treatment significantly reduced colony formation and induced a rise in cell cycle population, both at the G2/M and Sub-G1 phases. These effects are supported by increased apoptosis and gene expression markers for cell cycle arrest, without evidence of replication stress or DNA damage.

Conclusions: Combining R1D2-10 with PTX may provide an effective therapeutic strategy to reduce dose-related toxicity while enhancing chemotherapy effects in TNBC. Further, in vivo studies are needed to validate these findings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.90
自引率
1.70%
发文量
58
审稿时长
3 months
期刊介绍: The journal evaluates molecules, signalling pathways, receptors and other therapeutic targets and their potential as candidates for drug development. Articles in this journal focus on the molecular level and early preclinical studies. Articles should not include clinical information including specific drugs and clinical trials. The Editors welcome: Reviews covering novel disease targets at the molecular level and information on early preclinical studies and their implications for future drug development. Articles should not include clinical information including specific drugs and clinical trials. Original research papers reporting results of target selection and validation studies and basic mechanism of action studies for investigative and marketed drugs. The audience consists of scientists, managers and decision makers in the pharmaceutical industry, academic researchers working in the field of molecular medicine and others closely involved in R&D.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信