Johannes Brötzner, Herbert Biber, Paul Stefan Szabo, Noah Jäggi, Lea Fuchs, Andreas Nenning, Martina Fellinger, Gyula Nagy, Eduardo Pitthan, Daniel Primetzhofer, Andreas Mutzke, Richard Arthur Wilhelm, Peter Wurz, André Galli, Friedrich Aumayr
{"title":"太阳风对月球风化层的侵蚀受到表面形态和风化层性质的抑制。","authors":"Johannes Brötzner, Herbert Biber, Paul Stefan Szabo, Noah Jäggi, Lea Fuchs, Andreas Nenning, Martina Fellinger, Gyula Nagy, Eduardo Pitthan, Daniel Primetzhofer, Andreas Mutzke, Richard Arthur Wilhelm, Peter Wurz, André Galli, Friedrich Aumayr","doi":"10.1038/s43247-025-02546-0","DOIUrl":null,"url":null,"abstract":"<p><p>Important aspects concerning the origin and formation of the Moon's exosphere, its tenuous gas envelope, remain puzzling with uncertainties regarding the importance of different effects. Two competing processes - micrometeoroid impact vaporization and solar wind ion sputtering - are considered key contributors to the ejection of particles into the exosphere. Here we present direct, high-precision yield measurements of solar wind ion sputtering using real lunar samples (Apollo 16 sample 68501), combined with advanced 3D simulations of regolith erosion. We find solar wind sputter yields up to an order of magnitude lower than previously used in exosphere models. The difference is primarily due to the suppressive effects of surface morphology, in particular the roughness and high porosity of the lunar regolith. Our results provide critical, experimentally validated sputter yield estimates and address long-standing modeling uncertainties. These results are particularly timely in light of upcoming and ongoing missions, such as the Artemis program at the Moon or BepiColombo at Mercury, contributing essentially to our understanding of how the surfaces of rocky bodies in the solar system are altered.</p>","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":"6 1","pages":"560"},"PeriodicalIF":8.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12267057/pdf/","citationCount":"0","resultStr":"{\"title\":\"Solar wind erosion of lunar regolith is suppressed by surface morphology and regolith properties.\",\"authors\":\"Johannes Brötzner, Herbert Biber, Paul Stefan Szabo, Noah Jäggi, Lea Fuchs, Andreas Nenning, Martina Fellinger, Gyula Nagy, Eduardo Pitthan, Daniel Primetzhofer, Andreas Mutzke, Richard Arthur Wilhelm, Peter Wurz, André Galli, Friedrich Aumayr\",\"doi\":\"10.1038/s43247-025-02546-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Important aspects concerning the origin and formation of the Moon's exosphere, its tenuous gas envelope, remain puzzling with uncertainties regarding the importance of different effects. Two competing processes - micrometeoroid impact vaporization and solar wind ion sputtering - are considered key contributors to the ejection of particles into the exosphere. Here we present direct, high-precision yield measurements of solar wind ion sputtering using real lunar samples (Apollo 16 sample 68501), combined with advanced 3D simulations of regolith erosion. We find solar wind sputter yields up to an order of magnitude lower than previously used in exosphere models. The difference is primarily due to the suppressive effects of surface morphology, in particular the roughness and high porosity of the lunar regolith. Our results provide critical, experimentally validated sputter yield estimates and address long-standing modeling uncertainties. These results are particularly timely in light of upcoming and ongoing missions, such as the Artemis program at the Moon or BepiColombo at Mercury, contributing essentially to our understanding of how the surfaces of rocky bodies in the solar system are altered.</p>\",\"PeriodicalId\":10530,\"journal\":{\"name\":\"Communications Earth & Environment\",\"volume\":\"6 1\",\"pages\":\"560\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12267057/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Earth & Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1038/s43247-025-02546-0\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1038/s43247-025-02546-0","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Solar wind erosion of lunar regolith is suppressed by surface morphology and regolith properties.
Important aspects concerning the origin and formation of the Moon's exosphere, its tenuous gas envelope, remain puzzling with uncertainties regarding the importance of different effects. Two competing processes - micrometeoroid impact vaporization and solar wind ion sputtering - are considered key contributors to the ejection of particles into the exosphere. Here we present direct, high-precision yield measurements of solar wind ion sputtering using real lunar samples (Apollo 16 sample 68501), combined with advanced 3D simulations of regolith erosion. We find solar wind sputter yields up to an order of magnitude lower than previously used in exosphere models. The difference is primarily due to the suppressive effects of surface morphology, in particular the roughness and high porosity of the lunar regolith. Our results provide critical, experimentally validated sputter yield estimates and address long-standing modeling uncertainties. These results are particularly timely in light of upcoming and ongoing missions, such as the Artemis program at the Moon or BepiColombo at Mercury, contributing essentially to our understanding of how the surfaces of rocky bodies in the solar system are altered.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.