{"title":"抗疟疾药物在DNA界面上折叠g -四重体时环核碱基的化学性质和长度的作用。","authors":"Asim Bisoi, Prashant Chandra Singh","doi":"10.1116/6.0004389","DOIUrl":null,"url":null,"abstract":"<p><p>G-quadruplexes (G4) have been proposed as an alternative target for cancer therapy, as the folding of DNA sequences into stabilized G4 in the cancer microenvironment affects key biological functions. The antimalarial drugs, hydroxychloroquine (HCQ) and chloroquine (CQ), are in the clinical trial stage for cancer therapy and have been found to fold DNA sequences into the stabilized G4 even in the absence of KCl salt. In this study, the role of loop nucleobases in terms of chemical nature, number, and location in the HCQ-/CQ-induced folding of DNA sequences into G4 in the absence of KCl has been investigated systematically. The data indicate that both drugs selectively induce the folding of DNA sequences into G-quadruplexes (G4) that contain thymine loop nucleobases. The folding tendency of DNA sequences into stabilized G4 decreases with the increase in the thymine loop nucleobases. Moreover, DNA sequences with fewer thymine loop nucleobases tend to fold into stable G4 when the thymine residues are present at the terminal positions, whereas sequences with more thymine loop nucleobases show higher G4 folding propensity when these bases are located at the central loop. These findings are important in understanding the anticancer effect of antimalarial drugs.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"20 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insight into the role of the chemical nature and length of the loop nucleobases in the folding of G-quadruplex by the antimalarial drugs at the DNA interface.\",\"authors\":\"Asim Bisoi, Prashant Chandra Singh\",\"doi\":\"10.1116/6.0004389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>G-quadruplexes (G4) have been proposed as an alternative target for cancer therapy, as the folding of DNA sequences into stabilized G4 in the cancer microenvironment affects key biological functions. The antimalarial drugs, hydroxychloroquine (HCQ) and chloroquine (CQ), are in the clinical trial stage for cancer therapy and have been found to fold DNA sequences into the stabilized G4 even in the absence of KCl salt. In this study, the role of loop nucleobases in terms of chemical nature, number, and location in the HCQ-/CQ-induced folding of DNA sequences into G4 in the absence of KCl has been investigated systematically. The data indicate that both drugs selectively induce the folding of DNA sequences into G-quadruplexes (G4) that contain thymine loop nucleobases. The folding tendency of DNA sequences into stabilized G4 decreases with the increase in the thymine loop nucleobases. Moreover, DNA sequences with fewer thymine loop nucleobases tend to fold into stable G4 when the thymine residues are present at the terminal positions, whereas sequences with more thymine loop nucleobases show higher G4 folding propensity when these bases are located at the central loop. These findings are important in understanding the anticancer effect of antimalarial drugs.</p>\",\"PeriodicalId\":9053,\"journal\":{\"name\":\"Biointerphases\",\"volume\":\"20 4\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerphases\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0004389\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0004389","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Insight into the role of the chemical nature and length of the loop nucleobases in the folding of G-quadruplex by the antimalarial drugs at the DNA interface.
G-quadruplexes (G4) have been proposed as an alternative target for cancer therapy, as the folding of DNA sequences into stabilized G4 in the cancer microenvironment affects key biological functions. The antimalarial drugs, hydroxychloroquine (HCQ) and chloroquine (CQ), are in the clinical trial stage for cancer therapy and have been found to fold DNA sequences into the stabilized G4 even in the absence of KCl salt. In this study, the role of loop nucleobases in terms of chemical nature, number, and location in the HCQ-/CQ-induced folding of DNA sequences into G4 in the absence of KCl has been investigated systematically. The data indicate that both drugs selectively induce the folding of DNA sequences into G-quadruplexes (G4) that contain thymine loop nucleobases. The folding tendency of DNA sequences into stabilized G4 decreases with the increase in the thymine loop nucleobases. Moreover, DNA sequences with fewer thymine loop nucleobases tend to fold into stable G4 when the thymine residues are present at the terminal positions, whereas sequences with more thymine loop nucleobases show higher G4 folding propensity when these bases are located at the central loop. These findings are important in understanding the anticancer effect of antimalarial drugs.
期刊介绍:
Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee.
Topics include:
bio-surface modification
nano-bio interface
protein-surface interactions
cell-surface interactions
in vivo and in vitro systems
biofilms / biofouling
biosensors / biodiagnostics
bio on a chip
coatings
interface spectroscopy
biotribology / biorheology
molecular recognition
ambient diagnostic methods
interface modelling
adhesion phenomena.