镍催化合成聚(1,4-蒽醌)

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Florin Adler, Sebastián Pinto-Bautista, Christoph Lorenz, Lars Hinrichs, Marcel Weil, Birgit Esser
{"title":"镍催化合成聚(1,4-蒽醌)","authors":"Florin Adler, Sebastián Pinto-Bautista, Christoph Lorenz, Lars Hinrichs, Marcel Weil, Birgit Esser","doi":"10.1002/advs.202506251","DOIUrl":null,"url":null,"abstract":"<p><p>Multivalent metal batteries are attractive options to diversify energy storage options offering higher sustainability, but the high charge density of multivalent ions poses challenges to electrode materials. Organic electrode materials are currently the best-performing candidates, and among them, poly(1,4-anthraquinone) (P14AQ) shows excellent electrochemical properties. This holds in particular for magnesium-ion batteries, where the polymer displays reversible insertion of Mg<sup>2+</sup> ions with high cycling stability. The conventional synthesis of P14AQ, however, employs stoichiometric amounts of bis(cycloocta-1,5-diene)nickel(0) (Ni(COD)<sub>2</sub>), which is an air- and light-sensitive and expensive chemical, and therefore lacks sustainability. Herein a synthetic route to P14AQ is presented that uses only catalytic amounts of dibromobis(triphenylphosphine)nickel(II) (NiBr<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>). This route - in addition to being more cost-efficient and less toxic - results in higher yields and polymer molecular weights. A life-cycle assessment (LCA) comparing the new and conventional polymerization methods shows that regarding the environmental impact categories climate change, human toxicity, and cumulative energy demand, the new method brings significant improvement.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e06251"},"PeriodicalIF":14.1000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Poly(1,4-anthraquinone) Using Catalytic Amounts of Nickel.\",\"authors\":\"Florin Adler, Sebastián Pinto-Bautista, Christoph Lorenz, Lars Hinrichs, Marcel Weil, Birgit Esser\",\"doi\":\"10.1002/advs.202506251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multivalent metal batteries are attractive options to diversify energy storage options offering higher sustainability, but the high charge density of multivalent ions poses challenges to electrode materials. Organic electrode materials are currently the best-performing candidates, and among them, poly(1,4-anthraquinone) (P14AQ) shows excellent electrochemical properties. This holds in particular for magnesium-ion batteries, where the polymer displays reversible insertion of Mg<sup>2+</sup> ions with high cycling stability. The conventional synthesis of P14AQ, however, employs stoichiometric amounts of bis(cycloocta-1,5-diene)nickel(0) (Ni(COD)<sub>2</sub>), which is an air- and light-sensitive and expensive chemical, and therefore lacks sustainability. Herein a synthetic route to P14AQ is presented that uses only catalytic amounts of dibromobis(triphenylphosphine)nickel(II) (NiBr<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>). This route - in addition to being more cost-efficient and less toxic - results in higher yields and polymer molecular weights. A life-cycle assessment (LCA) comparing the new and conventional polymerization methods shows that regarding the environmental impact categories climate change, human toxicity, and cumulative energy demand, the new method brings significant improvement.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e06251\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202506251\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202506251","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

多价金属电池是一种具有吸引力的储能选择,可提供更高的可持续性,但多价离子的高电荷密度对电极材料提出了挑战。有机电极材料是目前表现最好的候选材料,其中聚(1,4-蒽醌)(P14AQ)表现出优异的电化学性能。这尤其适用于镁离子电池,这种聚合物显示出可逆的Mg2+离子插入,具有高循环稳定性。然而,P14AQ的传统合成方法使用了化学计量量的双(环-1,5-二烯)镍(0)(Ni(COD)2),这是一种对空气和光敏且昂贵的化学物质,因此缺乏可持续性。本文提出了一种仅使用催化量的二溴比斯(三苯基膦)镍(II) (NiBr2(PPh3)2)合成P14AQ的方法。这种方法除了成本更低、毒性更小之外,还能提高产量和聚合物分子量。生命周期评价(LCA)结果表明,新聚合方法与传统聚合方法在环境影响、气候变化、人类毒性和累积能源需求等方面有显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of Poly(1,4-anthraquinone) Using Catalytic Amounts of Nickel.

Multivalent metal batteries are attractive options to diversify energy storage options offering higher sustainability, but the high charge density of multivalent ions poses challenges to electrode materials. Organic electrode materials are currently the best-performing candidates, and among them, poly(1,4-anthraquinone) (P14AQ) shows excellent electrochemical properties. This holds in particular for magnesium-ion batteries, where the polymer displays reversible insertion of Mg2+ ions with high cycling stability. The conventional synthesis of P14AQ, however, employs stoichiometric amounts of bis(cycloocta-1,5-diene)nickel(0) (Ni(COD)2), which is an air- and light-sensitive and expensive chemical, and therefore lacks sustainability. Herein a synthetic route to P14AQ is presented that uses only catalytic amounts of dibromobis(triphenylphosphine)nickel(II) (NiBr2(PPh3)2). This route - in addition to being more cost-efficient and less toxic - results in higher yields and polymer molecular weights. A life-cycle assessment (LCA) comparing the new and conventional polymerization methods shows that regarding the environmental impact categories climate change, human toxicity, and cumulative energy demand, the new method brings significant improvement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信