单细胞磁显微镜SPION标记的优化。

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Andre Pointner*, Daniela Thalheim, Sarah Belasi, Lukas Heinen, Cristian Bonato, Tobias Luehmann, Jan Meijer, Rainer Tietze, Christoph Alexiou, Regine Schneider-Stock and Roland Nagy*, 
{"title":"单细胞磁显微镜SPION标记的优化。","authors":"Andre Pointner*,&nbsp;Daniela Thalheim,&nbsp;Sarah Belasi,&nbsp;Lukas Heinen,&nbsp;Cristian Bonato,&nbsp;Tobias Luehmann,&nbsp;Jan Meijer,&nbsp;Rainer Tietze,&nbsp;Christoph Alexiou,&nbsp;Regine Schneider-Stock and Roland Nagy*,&nbsp;","doi":"10.1021/acs.jpclett.5c01446","DOIUrl":null,"url":null,"abstract":"<p >This study explores the correlation between the iron mass on cell surfaces and the resultant magnetic field. Human colorectal cancer cells (HT29 line) were labeled with varying concentrations of superparamagnetic iron oxide nanoparticles (SPIONs) and imaged via an NV center widefield magnetic microscope. To assess the labeling efficacy, a convolutional neural network trained on simulated magnetic dipole data was utilized to reconstruct key labeling parameters on a cell-by-cell basis, including cell diameter, sensor proximity, and the iron mass associated with surface-bound SPIONs. Our analysis provided quantitative metrics for these parameters across a range of labeling concentrations. The findings indicated that increasing the SPION concentration enhances both the cell-surface iron mass and magnetic field strength, demonstrating a saturation effect. This methodology offers a coherent framework for the quantitative, high-throughput characterization of magnetically labeled cells, presenting significant implications for the fields of cell biology and magnetic sensing applications.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 30","pages":"7584–7590"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing SPION Labeling for Single-Cell Magnetic Microscopy\",\"authors\":\"Andre Pointner*,&nbsp;Daniela Thalheim,&nbsp;Sarah Belasi,&nbsp;Lukas Heinen,&nbsp;Cristian Bonato,&nbsp;Tobias Luehmann,&nbsp;Jan Meijer,&nbsp;Rainer Tietze,&nbsp;Christoph Alexiou,&nbsp;Regine Schneider-Stock and Roland Nagy*,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.5c01446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study explores the correlation between the iron mass on cell surfaces and the resultant magnetic field. Human colorectal cancer cells (HT29 line) were labeled with varying concentrations of superparamagnetic iron oxide nanoparticles (SPIONs) and imaged via an NV center widefield magnetic microscope. To assess the labeling efficacy, a convolutional neural network trained on simulated magnetic dipole data was utilized to reconstruct key labeling parameters on a cell-by-cell basis, including cell diameter, sensor proximity, and the iron mass associated with surface-bound SPIONs. Our analysis provided quantitative metrics for these parameters across a range of labeling concentrations. The findings indicated that increasing the SPION concentration enhances both the cell-surface iron mass and magnetic field strength, demonstrating a saturation effect. This methodology offers a coherent framework for the quantitative, high-throughput characterization of magnetically labeled cells, presenting significant implications for the fields of cell biology and magnetic sensing applications.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"16 30\",\"pages\":\"7584–7590\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c01446\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c01446","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了细胞表面的铁质量与产生的磁场之间的关系。用不同浓度的超顺磁性氧化铁纳米颗粒(SPIONs)标记人类结直肠癌细胞(HT29系),并通过NV中心宽视场磁显微镜成像。为了评估标记效果,利用模拟磁偶极子数据训练的卷积神经网络来重建每个细胞的关键标记参数,包括细胞直径、传感器距离和与表面结合的SPIONs相关的铁质量。我们的分析提供了一系列标记浓度范围内这些参数的定量指标。结果表明,增加SPION浓度可提高细胞表面铁质量和磁场强度,表现出饱和效应。该方法为磁性标记细胞的定量、高通量表征提供了一个连贯的框架,对细胞生物学和磁传感应用领域具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimizing SPION Labeling for Single-Cell Magnetic Microscopy

Optimizing SPION Labeling for Single-Cell Magnetic Microscopy

This study explores the correlation between the iron mass on cell surfaces and the resultant magnetic field. Human colorectal cancer cells (HT29 line) were labeled with varying concentrations of superparamagnetic iron oxide nanoparticles (SPIONs) and imaged via an NV center widefield magnetic microscope. To assess the labeling efficacy, a convolutional neural network trained on simulated magnetic dipole data was utilized to reconstruct key labeling parameters on a cell-by-cell basis, including cell diameter, sensor proximity, and the iron mass associated with surface-bound SPIONs. Our analysis provided quantitative metrics for these parameters across a range of labeling concentrations. The findings indicated that increasing the SPION concentration enhances both the cell-surface iron mass and magnetic field strength, demonstrating a saturation effect. This methodology offers a coherent framework for the quantitative, high-throughput characterization of magnetically labeled cells, presenting significant implications for the fields of cell biology and magnetic sensing applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信