基于CFIPC-YOLO的毫米波图像隐藏目标检测

IF 0.7 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Huakun Zhang, Lin Guo, Deyue An,  Odbal
{"title":"基于CFIPC-YOLO的毫米波图像隐藏目标检测","authors":"Huakun Zhang,&nbsp;Lin Guo,&nbsp;Deyue An,&nbsp; Odbal","doi":"10.1049/ell2.70367","DOIUrl":null,"url":null,"abstract":"<p>Human body security inspection is a critical task, and most existing methods rely on millimetre-wave images to detect concealed objects. However, detecting small and dim objects remains a significant challenge due to their subtle visual characteristics. To address this issue, this study proposes an efficient model, CFIPC-YOLO (contextual features integrated progressive convergence network based on the YOLOv8), which integrates local and contextual features into a progressively converging framework based on YOLO. Experimental results show that CFIPC-YOLO achieves a 5.3% improvement in AP50 compared to the YOLOv8 baseline, while simultaneously reducing the number of parameters by 17%, confirming the model's superior performance.</p>","PeriodicalId":11556,"journal":{"name":"Electronics Letters","volume":"61 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ell2.70367","citationCount":"0","resultStr":"{\"title\":\"CFIPC-YOLO for Concealed Object Detection in Millimetre Wave Images\",\"authors\":\"Huakun Zhang,&nbsp;Lin Guo,&nbsp;Deyue An,&nbsp; Odbal\",\"doi\":\"10.1049/ell2.70367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Human body security inspection is a critical task, and most existing methods rely on millimetre-wave images to detect concealed objects. However, detecting small and dim objects remains a significant challenge due to their subtle visual characteristics. To address this issue, this study proposes an efficient model, CFIPC-YOLO (contextual features integrated progressive convergence network based on the YOLOv8), which integrates local and contextual features into a progressively converging framework based on YOLO. Experimental results show that CFIPC-YOLO achieves a 5.3% improvement in AP50 compared to the YOLOv8 baseline, while simultaneously reducing the number of parameters by 17%, confirming the model's superior performance.</p>\",\"PeriodicalId\":11556,\"journal\":{\"name\":\"Electronics Letters\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ell2.70367\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ell2.70367\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics Letters","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ell2.70367","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

人体安全检查是一项关键任务,现有的方法大多依靠毫米波图像来检测隐藏物体。然而,检测小而暗的物体由于其微妙的视觉特性仍然是一个重大的挑战。为了解决这一问题,本研究提出了一种高效的模型CFIPC-YOLO (contextual features integrated progressive convergence network,基于YOLOv8的上下文特征集成渐进收敛网络),该模型将局部特征和上下文特征集成到基于YOLO的渐进收敛框架中。实验结果表明,CFIPC-YOLO的AP50比YOLOv8基线提高了5.3%,同时参数数量减少了17%,证实了该模型的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

CFIPC-YOLO for Concealed Object Detection in Millimetre Wave Images

CFIPC-YOLO for Concealed Object Detection in Millimetre Wave Images

Human body security inspection is a critical task, and most existing methods rely on millimetre-wave images to detect concealed objects. However, detecting small and dim objects remains a significant challenge due to their subtle visual characteristics. To address this issue, this study proposes an efficient model, CFIPC-YOLO (contextual features integrated progressive convergence network based on the YOLOv8), which integrates local and contextual features into a progressively converging framework based on YOLO. Experimental results show that CFIPC-YOLO achieves a 5.3% improvement in AP50 compared to the YOLOv8 baseline, while simultaneously reducing the number of parameters by 17%, confirming the model's superior performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronics Letters
Electronics Letters 工程技术-工程:电子与电气
CiteScore
2.70
自引率
0.00%
发文量
268
审稿时长
3.6 months
期刊介绍: Electronics Letters is an internationally renowned peer-reviewed rapid-communication journal that publishes short original research papers every two weeks. Its broad and interdisciplinary scope covers the latest developments in all electronic engineering related fields including communication, biomedical, optical and device technologies. Electronics Letters also provides further insight into some of the latest developments through special features and interviews. Scope As a journal at the forefront of its field, Electronics Letters publishes papers covering all themes of electronic and electrical engineering. The major themes of the journal are listed below. Antennas and Propagation Biomedical and Bioinspired Technologies, Signal Processing and Applications Control Engineering Electromagnetism: Theory, Materials and Devices Electronic Circuits and Systems Image, Video and Vision Processing and Applications Information, Computing and Communications Instrumentation and Measurement Microwave Technology Optical Communications Photonics and Opto-Electronics Power Electronics, Energy and Sustainability Radar, Sonar and Navigation Semiconductor Technology Signal Processing MIMO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信