Jun Yu, Kristen M. Krumhardt, J. Keith Moore, Robert T. Letscher, Shanlin Wang, Nicola A. Wiseman, Matthew C. Long, Keith Lindsay, Michael Levy, Colleen M. Petrik, Adam C. Martiny
{"title":"用多种浮游生物功能类型模拟海洋生态系统动力学和生物地球化学循环","authors":"Jun Yu, Kristen M. Krumhardt, J. Keith Moore, Robert T. Letscher, Shanlin Wang, Nicola A. Wiseman, Matthew C. Long, Keith Lindsay, Michael Levy, Colleen M. Petrik, Adam C. Martiny","doi":"10.1029/2024MS004521","DOIUrl":null,"url":null,"abstract":"<p>Current representations of marine ecosystems in Earth System Models are greatly simplified, neglecting key interactions between dynamic food webs, biogeochemistry, and climate change. We use the Marine Biogeochemistry Library code base within the Community Earth System Model 2.2.2 to create an expanded ecosystem model with eight phytoplankton groups and four zooplankton size classes (MARBL-8P4Z). Incorporating more specific plankton types and size classes has the potential to capture a wider range of possible behaviors of the ecosystem, its complex interactions with biogeochemistry, and its feedback to climate change. It also permits stronger observational constraints, including in situ group-specific biomass and various observational estimates of plankton community composition. MARBL-8P4Z broadly captures observed global-scale patterns in biomass and community composition for both phytoplankton and zooplankton, with a good performance in simulating broad biogeochemistry fields. The model shows comparable spatial patterns and magnitudes to the observed picophytoplankton biomass (<i>Prochlorococcus, Synechococcus,</i> picoeukaryotes), and captures the seasonal cycle of mesozooplankton biomass. Picophytoplankton groups and microzooplankton dominate biomass and production in oligotrophic, subtropical regions, while nano-phytoplankton, diatoms and the larger zooplankton groups prevail at higher latitudes and within upwelling zones. The model simulates reasonable energy transfer efficiency through the food web, with tight linkages between the phytoplankton community composition, zooplankton grazing, and carbon export, with the potential to link to fisheries models. Thus, MARBL-8P4Z has the potential to account for key climate-driven ecological shifts in the plankton that will modify ocean biogeochemistry in the future.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 7","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004521","citationCount":"0","resultStr":"{\"title\":\"Simulating Marine Ecosystem Dynamics and Biogeochemical Cycling With Multiple Plankton Functional Types\",\"authors\":\"Jun Yu, Kristen M. Krumhardt, J. Keith Moore, Robert T. Letscher, Shanlin Wang, Nicola A. Wiseman, Matthew C. Long, Keith Lindsay, Michael Levy, Colleen M. Petrik, Adam C. Martiny\",\"doi\":\"10.1029/2024MS004521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Current representations of marine ecosystems in Earth System Models are greatly simplified, neglecting key interactions between dynamic food webs, biogeochemistry, and climate change. We use the Marine Biogeochemistry Library code base within the Community Earth System Model 2.2.2 to create an expanded ecosystem model with eight phytoplankton groups and four zooplankton size classes (MARBL-8P4Z). Incorporating more specific plankton types and size classes has the potential to capture a wider range of possible behaviors of the ecosystem, its complex interactions with biogeochemistry, and its feedback to climate change. It also permits stronger observational constraints, including in situ group-specific biomass and various observational estimates of plankton community composition. MARBL-8P4Z broadly captures observed global-scale patterns in biomass and community composition for both phytoplankton and zooplankton, with a good performance in simulating broad biogeochemistry fields. The model shows comparable spatial patterns and magnitudes to the observed picophytoplankton biomass (<i>Prochlorococcus, Synechococcus,</i> picoeukaryotes), and captures the seasonal cycle of mesozooplankton biomass. Picophytoplankton groups and microzooplankton dominate biomass and production in oligotrophic, subtropical regions, while nano-phytoplankton, diatoms and the larger zooplankton groups prevail at higher latitudes and within upwelling zones. The model simulates reasonable energy transfer efficiency through the food web, with tight linkages between the phytoplankton community composition, zooplankton grazing, and carbon export, with the potential to link to fisheries models. Thus, MARBL-8P4Z has the potential to account for key climate-driven ecological shifts in the plankton that will modify ocean biogeochemistry in the future.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":\"17 7\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004521\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004521\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004521","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Simulating Marine Ecosystem Dynamics and Biogeochemical Cycling With Multiple Plankton Functional Types
Current representations of marine ecosystems in Earth System Models are greatly simplified, neglecting key interactions between dynamic food webs, biogeochemistry, and climate change. We use the Marine Biogeochemistry Library code base within the Community Earth System Model 2.2.2 to create an expanded ecosystem model with eight phytoplankton groups and four zooplankton size classes (MARBL-8P4Z). Incorporating more specific plankton types and size classes has the potential to capture a wider range of possible behaviors of the ecosystem, its complex interactions with biogeochemistry, and its feedback to climate change. It also permits stronger observational constraints, including in situ group-specific biomass and various observational estimates of plankton community composition. MARBL-8P4Z broadly captures observed global-scale patterns in biomass and community composition for both phytoplankton and zooplankton, with a good performance in simulating broad biogeochemistry fields. The model shows comparable spatial patterns and magnitudes to the observed picophytoplankton biomass (Prochlorococcus, Synechococcus, picoeukaryotes), and captures the seasonal cycle of mesozooplankton biomass. Picophytoplankton groups and microzooplankton dominate biomass and production in oligotrophic, subtropical regions, while nano-phytoplankton, diatoms and the larger zooplankton groups prevail at higher latitudes and within upwelling zones. The model simulates reasonable energy transfer efficiency through the food web, with tight linkages between the phytoplankton community composition, zooplankton grazing, and carbon export, with the potential to link to fisheries models. Thus, MARBL-8P4Z has the potential to account for key climate-driven ecological shifts in the plankton that will modify ocean biogeochemistry in the future.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.