Pingxi Wang, Min Li, Xingye Ma, Bin Zhao, Xining Jin, Shilin Chen, Xiaoxiang Zhang, Xiangyuan Wu, Huaisheng Zhang
{"title":"综合生理、转录组学和代谢组学分析揭示了玉米耐镉性的杂种优势","authors":"Pingxi Wang, Min Li, Xingye Ma, Bin Zhao, Xining Jin, Shilin Chen, Xiaoxiang Zhang, Xiangyuan Wu, Huaisheng Zhang","doi":"10.1016/j.plaphy.2025.110265","DOIUrl":null,"url":null,"abstract":"<div><div>Heterosis describes superior performance of F<sub>1</sub> hybrids over parents in yield and stress tolerance, yet its role in Cd tolerance remains poorly characterized in maize. This study integrated physiological, transcriptomic, and metabolomic analyses for the hybrid Zhengdan958 (ZD958) and its parents under cadmium (Cd) stress. Compared to parental lines, ZD958 consistently exhibited superior morphological traits (e.g., plant height, root biomass) and significantly enhanced elevated catalase (CAT) activity under Cd stress. Mid-parent heterosis (MPH) for key traits ranged from 2.73 % to 25.90 %, confirming robust hybrid vigor under Cd exposure. Transcriptomic analysis identified 904 unique differentially expressed genes (DEGs) in ZD958 under Cd stress, with weighted gene co-expression network analysis (WGCNA) revealing two key modules. Metabolomic analysis identified 902 metabolites, and the differentially accumulated metabolites in ZD958 primarily enriched in phenylpropanoid biosynthesis, glycerophospholipid metabolism, and glycosylphosphatidylinositol-anchor biosynthesis. Analysis of non-additive expression (NAE) genes identified one gene under both conditions, which was also specifically down-regulated in ZD958 under Cd stress. Analysis of allele-specific expression (ASE) genes revealed 12 genetically over-dominant genes in ZD958. Integrated multi-omics analysis highlighted the critical roles of phenylpropanoid biosynthesis and starch and sucrose metabolism in the heterosis of ZD958 to Cd stress. Our findings provide novel insights into how phenylpropanoid biosynthesis and starch/sucrose metabolism mediate heterosis for Cd tolerance.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"228 ","pages":"Article 110265"},"PeriodicalIF":5.7000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated physiological, transcriptomic and metabolomic analysis revealed heterosis for cadmium tolerance in maize\",\"authors\":\"Pingxi Wang, Min Li, Xingye Ma, Bin Zhao, Xining Jin, Shilin Chen, Xiaoxiang Zhang, Xiangyuan Wu, Huaisheng Zhang\",\"doi\":\"10.1016/j.plaphy.2025.110265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Heterosis describes superior performance of F<sub>1</sub> hybrids over parents in yield and stress tolerance, yet its role in Cd tolerance remains poorly characterized in maize. This study integrated physiological, transcriptomic, and metabolomic analyses for the hybrid Zhengdan958 (ZD958) and its parents under cadmium (Cd) stress. Compared to parental lines, ZD958 consistently exhibited superior morphological traits (e.g., plant height, root biomass) and significantly enhanced elevated catalase (CAT) activity under Cd stress. Mid-parent heterosis (MPH) for key traits ranged from 2.73 % to 25.90 %, confirming robust hybrid vigor under Cd exposure. Transcriptomic analysis identified 904 unique differentially expressed genes (DEGs) in ZD958 under Cd stress, with weighted gene co-expression network analysis (WGCNA) revealing two key modules. Metabolomic analysis identified 902 metabolites, and the differentially accumulated metabolites in ZD958 primarily enriched in phenylpropanoid biosynthesis, glycerophospholipid metabolism, and glycosylphosphatidylinositol-anchor biosynthesis. Analysis of non-additive expression (NAE) genes identified one gene under both conditions, which was also specifically down-regulated in ZD958 under Cd stress. Analysis of allele-specific expression (ASE) genes revealed 12 genetically over-dominant genes in ZD958. Integrated multi-omics analysis highlighted the critical roles of phenylpropanoid biosynthesis and starch and sucrose metabolism in the heterosis of ZD958 to Cd stress. Our findings provide novel insights into how phenylpropanoid biosynthesis and starch/sucrose metabolism mediate heterosis for Cd tolerance.</div></div>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":\"228 \",\"pages\":\"Article 110265\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0981942825007934\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942825007934","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Integrated physiological, transcriptomic and metabolomic analysis revealed heterosis for cadmium tolerance in maize
Heterosis describes superior performance of F1 hybrids over parents in yield and stress tolerance, yet its role in Cd tolerance remains poorly characterized in maize. This study integrated physiological, transcriptomic, and metabolomic analyses for the hybrid Zhengdan958 (ZD958) and its parents under cadmium (Cd) stress. Compared to parental lines, ZD958 consistently exhibited superior morphological traits (e.g., plant height, root biomass) and significantly enhanced elevated catalase (CAT) activity under Cd stress. Mid-parent heterosis (MPH) for key traits ranged from 2.73 % to 25.90 %, confirming robust hybrid vigor under Cd exposure. Transcriptomic analysis identified 904 unique differentially expressed genes (DEGs) in ZD958 under Cd stress, with weighted gene co-expression network analysis (WGCNA) revealing two key modules. Metabolomic analysis identified 902 metabolites, and the differentially accumulated metabolites in ZD958 primarily enriched in phenylpropanoid biosynthesis, glycerophospholipid metabolism, and glycosylphosphatidylinositol-anchor biosynthesis. Analysis of non-additive expression (NAE) genes identified one gene under both conditions, which was also specifically down-regulated in ZD958 under Cd stress. Analysis of allele-specific expression (ASE) genes revealed 12 genetically over-dominant genes in ZD958. Integrated multi-omics analysis highlighted the critical roles of phenylpropanoid biosynthesis and starch and sucrose metabolism in the heterosis of ZD958 to Cd stress. Our findings provide novel insights into how phenylpropanoid biosynthesis and starch/sucrose metabolism mediate heterosis for Cd tolerance.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.