高速公路otfs辅助传感自适应巡航控制:一种强化学习方法

IF 4.8 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yulin Liu;Xiaoqi Zhang;Jun Wu;Qingqing Cheng
{"title":"高速公路otfs辅助传感自适应巡航控制:一种强化学习方法","authors":"Yulin Liu;Xiaoqi Zhang;Jun Wu;Qingqing Cheng","doi":"10.1109/OJVT.2025.3574223","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel channel estimation approach and driving decision method for adaptive cruise control (ACC) systems for vehicular networks, leveraging the properties of deep learning, reinforcement learning, and orthogonal time frequency space (OTFS) modulation. To achieve that, we propose to leverage deep learning (DL) to estimate motion parameters. Subsequently, we develop a reinforcement learning method to process the obtained target motion information to enable adaptive vehicle-following strategies. This ensures robust decision-making and precise control under dynamic and uncertain driving conditions, achieving superior performance in terms of both accuracy and reliability.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"1861-1871"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11016009","citationCount":"0","resultStr":"{\"title\":\"OTFS-Assisted Sensing Adaptive Cruise Control for Highways: A Reinforcement Learning Approach\",\"authors\":\"Yulin Liu;Xiaoqi Zhang;Jun Wu;Qingqing Cheng\",\"doi\":\"10.1109/OJVT.2025.3574223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel channel estimation approach and driving decision method for adaptive cruise control (ACC) systems for vehicular networks, leveraging the properties of deep learning, reinforcement learning, and orthogonal time frequency space (OTFS) modulation. To achieve that, we propose to leverage deep learning (DL) to estimate motion parameters. Subsequently, we develop a reinforcement learning method to process the obtained target motion information to enable adaptive vehicle-following strategies. This ensures robust decision-making and precise control under dynamic and uncertain driving conditions, achieving superior performance in terms of both accuracy and reliability.\",\"PeriodicalId\":34270,\"journal\":{\"name\":\"IEEE Open Journal of Vehicular Technology\",\"volume\":\"6 \",\"pages\":\"1861-1871\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11016009\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Vehicular Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11016009/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11016009/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种新的自适应巡航控制(ACC)系统的信道估计方法和驾驶决策方法,利用深度学习、强化学习和正交时频空间(OTFS)调制的特性。为了实现这一目标,我们建议利用深度学习(DL)来估计运动参数。随后,我们开发了一种强化学习方法来处理获得的目标运动信息,以实现自适应车辆跟随策略。这确保了在动态和不确定的驾驶条件下稳健的决策和精确的控制,在准确性和可靠性方面都取得了卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OTFS-Assisted Sensing Adaptive Cruise Control for Highways: A Reinforcement Learning Approach
In this paper, we propose a novel channel estimation approach and driving decision method for adaptive cruise control (ACC) systems for vehicular networks, leveraging the properties of deep learning, reinforcement learning, and orthogonal time frequency space (OTFS) modulation. To achieve that, we propose to leverage deep learning (DL) to estimate motion parameters. Subsequently, we develop a reinforcement learning method to process the obtained target motion information to enable adaptive vehicle-following strategies. This ensures robust decision-making and precise control under dynamic and uncertain driving conditions, achieving superior performance in terms of both accuracy and reliability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信