基于逐点不失真后不确定性的振动感知激光雷达惯性里程计

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Yan Dong;Enci Xu;Shaoqiang Qiu;Wenxuan Li;Yang Liu;Bin Han
{"title":"基于逐点不失真后不确定性的振动感知激光雷达惯性里程计","authors":"Yan Dong;Enci Xu;Shaoqiang Qiu;Wenxuan Li;Yang Liu;Bin Han","doi":"10.1109/LRA.2025.3588393","DOIUrl":null,"url":null,"abstract":"High-speed ground robots moving on unstructured terrains generate intense high-frequency vibrations, leading to LiDAR scan distortions in Lidar-inertial odometry (LIO). Accurate and efficient undistortion is extremely challenging due to (1) rapid and non-smooth state changes during intense vibrations and (2) unpredictable IMU noise coupled with a limited IMU sampling frequency. To address this issue, this paper introduces post-undistortion uncertainty. First, we model the undistortion errors caused by linear and angular vibrations and assign post-undistortion uncertainty to each point. We then leverage this uncertainty to guide point-to-map matching, compute uncertainty-aware residuals, and update the odometry states using an iterated Kalman filter. We conduct vibration-platform and mobile-platform experiments on multiple public datasets as well as our own recordings, demonstrating that our method achieves better performance than other methods when LiDAR undergoes intense vibration.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 9","pages":"8706-8713"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vibration-Aware Lidar-Inertial Odometry Based on Point-Wise Post-Undistortion Uncertainty\",\"authors\":\"Yan Dong;Enci Xu;Shaoqiang Qiu;Wenxuan Li;Yang Liu;Bin Han\",\"doi\":\"10.1109/LRA.2025.3588393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-speed ground robots moving on unstructured terrains generate intense high-frequency vibrations, leading to LiDAR scan distortions in Lidar-inertial odometry (LIO). Accurate and efficient undistortion is extremely challenging due to (1) rapid and non-smooth state changes during intense vibrations and (2) unpredictable IMU noise coupled with a limited IMU sampling frequency. To address this issue, this paper introduces post-undistortion uncertainty. First, we model the undistortion errors caused by linear and angular vibrations and assign post-undistortion uncertainty to each point. We then leverage this uncertainty to guide point-to-map matching, compute uncertainty-aware residuals, and update the odometry states using an iterated Kalman filter. We conduct vibration-platform and mobile-platform experiments on multiple public datasets as well as our own recordings, demonstrating that our method achieves better performance than other methods when LiDAR undergoes intense vibration.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 9\",\"pages\":\"8706-8713\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11078440/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11078440/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

高速地面机器人在非结构化地形上移动会产生强烈的高频振动,导致激光雷达惯性里程计(LIO)中激光雷达扫描失真。由于(1)在强烈振动期间快速且不平滑的状态变化和(2)IMU不可预测的噪声加上有限的IMU采样频率,准确和高效的不失真是极具挑战性的。为了解决这个问题,本文引入了未失真后不确定性。首先,我们对线性和角振动引起的不失真误差进行建模,并为每个点分配不失真后的不确定性。然后,我们利用这种不确定性来指导点到地图的匹配,计算不确定性感知残差,并使用迭代卡尔曼滤波器更新里程计状态。我们在多个公共数据集以及我们自己的记录上进行了振动平台和移动平台的实验,证明我们的方法在LiDAR遭受强烈振动时比其他方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vibration-Aware Lidar-Inertial Odometry Based on Point-Wise Post-Undistortion Uncertainty
High-speed ground robots moving on unstructured terrains generate intense high-frequency vibrations, leading to LiDAR scan distortions in Lidar-inertial odometry (LIO). Accurate and efficient undistortion is extremely challenging due to (1) rapid and non-smooth state changes during intense vibrations and (2) unpredictable IMU noise coupled with a limited IMU sampling frequency. To address this issue, this paper introduces post-undistortion uncertainty. First, we model the undistortion errors caused by linear and angular vibrations and assign post-undistortion uncertainty to each point. We then leverage this uncertainty to guide point-to-map matching, compute uncertainty-aware residuals, and update the odometry states using an iterated Kalman filter. We conduct vibration-platform and mobile-platform experiments on multiple public datasets as well as our own recordings, demonstrating that our method achieves better performance than other methods when LiDAR undergoes intense vibration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信