用于药物递送的二氧化硅纳米颗粒的定制尺寸控制:合成参数的系统研究

IF 3.8 Q2 CHEMISTRY, PHYSICAL
Ghaseb Makhadmeh , Khaled Aljarrah , M-Ali H. Al-Akhras , Tariq AlZoubi , Abdulsalam Abuelsamen , Mahmoud Al Gharram , Samer Zyoud , Bojan Lazarevic , Mohamed A O Abdelfattah , Ahmad M. AL-Diabat
{"title":"用于药物递送的二氧化硅纳米颗粒的定制尺寸控制:合成参数的系统研究","authors":"Ghaseb Makhadmeh ,&nbsp;Khaled Aljarrah ,&nbsp;M-Ali H. Al-Akhras ,&nbsp;Tariq AlZoubi ,&nbsp;Abdulsalam Abuelsamen ,&nbsp;Mahmoud Al Gharram ,&nbsp;Samer Zyoud ,&nbsp;Bojan Lazarevic ,&nbsp;Mohamed A O Abdelfattah ,&nbsp;Ahmad M. AL-Diabat","doi":"10.1016/j.chphi.2025.100914","DOIUrl":null,"url":null,"abstract":"<div><div>Controlling the size of silica nanoparticles (SiNPs) is crucial for optimizing their efficacy in drug delivery applications. This study presents a micelle entrapment method utilizing triethoxyvinylsilane (TEVS) as a silica precursor, butanol as a solvent, Tween 80 as an anionic surfactant, and aqueous ammonia as a catalyst to finely control SiNP sizes. Systematic investigations into reaction temperature, butanol volume, and TEVS volume enabled precise nanoparticle sizing from 15 nm to 1800 nm. Specifically, raising the temperature from 22 °C to 47 °C and increasing butanol from 2 mL to 10 mL resulted in size increments ranging from 27 nm to 172 nm and 15 nm to 1800 nm, respectively. TEM analysis showed that increasing TEVS volume (1 mL to 4 mL) produced bimodal particle distributions with consistent particle sizes. Spherical morphology was confirmed via TEM and Malvern Zetasizer Nano ZS measurements. Predictive equations correlating synthesis parameters and nanoparticle sizes were established, providing a practical tool to achieve targeted SiNP sizes without additional experimentation.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"11 ","pages":"Article 100914"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailored size control of silica nanoparticles for drug delivery: A systematic study of synthesis parameters\",\"authors\":\"Ghaseb Makhadmeh ,&nbsp;Khaled Aljarrah ,&nbsp;M-Ali H. Al-Akhras ,&nbsp;Tariq AlZoubi ,&nbsp;Abdulsalam Abuelsamen ,&nbsp;Mahmoud Al Gharram ,&nbsp;Samer Zyoud ,&nbsp;Bojan Lazarevic ,&nbsp;Mohamed A O Abdelfattah ,&nbsp;Ahmad M. AL-Diabat\",\"doi\":\"10.1016/j.chphi.2025.100914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Controlling the size of silica nanoparticles (SiNPs) is crucial for optimizing their efficacy in drug delivery applications. This study presents a micelle entrapment method utilizing triethoxyvinylsilane (TEVS) as a silica precursor, butanol as a solvent, Tween 80 as an anionic surfactant, and aqueous ammonia as a catalyst to finely control SiNP sizes. Systematic investigations into reaction temperature, butanol volume, and TEVS volume enabled precise nanoparticle sizing from 15 nm to 1800 nm. Specifically, raising the temperature from 22 °C to 47 °C and increasing butanol from 2 mL to 10 mL resulted in size increments ranging from 27 nm to 172 nm and 15 nm to 1800 nm, respectively. TEM analysis showed that increasing TEVS volume (1 mL to 4 mL) produced bimodal particle distributions with consistent particle sizes. Spherical morphology was confirmed via TEM and Malvern Zetasizer Nano ZS measurements. Predictive equations correlating synthesis parameters and nanoparticle sizes were established, providing a practical tool to achieve targeted SiNP sizes without additional experimentation.</div></div>\",\"PeriodicalId\":9758,\"journal\":{\"name\":\"Chemical Physics Impact\",\"volume\":\"11 \",\"pages\":\"Article 100914\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics Impact\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667022425001008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022425001008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

控制二氧化硅纳米颗粒(SiNPs)的尺寸对于优化其在药物传递应用中的功效至关重要。本研究提出了以三乙基乙烯基硅烷(TEVS)为硅前驱体,丁醇为溶剂,Tween 80为阴离子表面活性剂,氨水为催化剂的胶束包埋方法,以精细控制SiNP的大小。对反应温度、丁醇体积和TEVS体积的系统研究使精确的纳米颗粒尺寸从15纳米到1800纳米成为可能。具体来说,将温度从22°C提高到47°C,将丁醇从2 mL增加到10 mL,分别导致尺寸增加从27 nm到172 nm和15 nm到1800 nm。TEM分析表明,增加TEVS体积(1 mL至4 mL)可产生粒径一致的双峰型颗粒分布。通过TEM和Malvern Zetasizer Nano ZS测量证实了其球形形貌。建立了合成参数与纳米颗粒尺寸相关的预测方程,为无需额外实验即可获得目标SiNP尺寸提供了实用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tailored size control of silica nanoparticles for drug delivery: A systematic study of synthesis parameters

Tailored size control of silica nanoparticles for drug delivery: A systematic study of synthesis parameters
Controlling the size of silica nanoparticles (SiNPs) is crucial for optimizing their efficacy in drug delivery applications. This study presents a micelle entrapment method utilizing triethoxyvinylsilane (TEVS) as a silica precursor, butanol as a solvent, Tween 80 as an anionic surfactant, and aqueous ammonia as a catalyst to finely control SiNP sizes. Systematic investigations into reaction temperature, butanol volume, and TEVS volume enabled precise nanoparticle sizing from 15 nm to 1800 nm. Specifically, raising the temperature from 22 °C to 47 °C and increasing butanol from 2 mL to 10 mL resulted in size increments ranging from 27 nm to 172 nm and 15 nm to 1800 nm, respectively. TEM analysis showed that increasing TEVS volume (1 mL to 4 mL) produced bimodal particle distributions with consistent particle sizes. Spherical morphology was confirmed via TEM and Malvern Zetasizer Nano ZS measurements. Predictive equations correlating synthesis parameters and nanoparticle sizes were established, providing a practical tool to achieve targeted SiNP sizes without additional experimentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信