Xavier Cano-Ferrer , Marcelo J. Moglie , George Konstantinou , Antonin Blot , Gaia Bianchini , Albane Imbert , Petr Znamenskiy , M. Florencia Iacaruso
{"title":"PhotoNeuro:一种用于神经科学行为实验中视觉刺激呈现同步的紧凑型光电探测器","authors":"Xavier Cano-Ferrer , Marcelo J. Moglie , George Konstantinou , Antonin Blot , Gaia Bianchini , Albane Imbert , Petr Znamenskiy , M. Florencia Iacaruso","doi":"10.1016/j.ohx.2025.e00677","DOIUrl":null,"url":null,"abstract":"<div><div>Presenting visual stimuli in neuroscience experiments often requires precise temporal alignment between visual events and electrophysiological or behavioural recordings. This is typically achieved by combining analogue signals that convey timing information about the visual cue shown on liquid crystal displays (LCDs), sensed via photodetectors and recorded through analogue-to-digital converter (ADC) acquisition boards. However, most commercial photodetector systems pose limitations such as high voltage requirements, large sensor footprints that interfere with stimulus presentation, and limited compatibility with open-source platforms. Here, we present a compact, low-cost photodetector system designed for compatibility with common 3.3–5 V microcontroller-based development boards (e.g., Arduino) and the open-source visual programming language Bonsai, widely used in neuroscience for experiment control. The circuit consists of a photodiode, an amplification stage, and a low-pass filter, and can optionally incorporate an infrared filter—useful for experiments involving infrared touch displays. To facilitate reproducibility, we provide complete design files, a bill of materials and detailed building and operational instructions. We further introduce a four-channel variant, enabling the detection of four-bit binary signals for more complex synchronization needs. Validation and characterization of the device were performed through grayscale gamma correction analysis of LCD monitors using Bonsai. Additionally, we demonstrate the system’s utility in a head-fixed mouse experiment, synchronizing visual stimulus onset with neuronal recordings acquired via Neuropixels 2.0 probes. Performance comparisons with a commercial photodetector device indicate that our system achieves equivalent signal fidelity at a substantially lower cost, while maintaining a minimal footprint suitable for experimental use.</div></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"23 ","pages":"Article e00677"},"PeriodicalIF":2.1000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PhotoNeuro: A compact photodetector for synchronization of visual stimulus presentation during behavioural experiments in neuroscience\",\"authors\":\"Xavier Cano-Ferrer , Marcelo J. Moglie , George Konstantinou , Antonin Blot , Gaia Bianchini , Albane Imbert , Petr Znamenskiy , M. Florencia Iacaruso\",\"doi\":\"10.1016/j.ohx.2025.e00677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Presenting visual stimuli in neuroscience experiments often requires precise temporal alignment between visual events and electrophysiological or behavioural recordings. This is typically achieved by combining analogue signals that convey timing information about the visual cue shown on liquid crystal displays (LCDs), sensed via photodetectors and recorded through analogue-to-digital converter (ADC) acquisition boards. However, most commercial photodetector systems pose limitations such as high voltage requirements, large sensor footprints that interfere with stimulus presentation, and limited compatibility with open-source platforms. Here, we present a compact, low-cost photodetector system designed for compatibility with common 3.3–5 V microcontroller-based development boards (e.g., Arduino) and the open-source visual programming language Bonsai, widely used in neuroscience for experiment control. The circuit consists of a photodiode, an amplification stage, and a low-pass filter, and can optionally incorporate an infrared filter—useful for experiments involving infrared touch displays. To facilitate reproducibility, we provide complete design files, a bill of materials and detailed building and operational instructions. We further introduce a four-channel variant, enabling the detection of four-bit binary signals for more complex synchronization needs. Validation and characterization of the device were performed through grayscale gamma correction analysis of LCD monitors using Bonsai. Additionally, we demonstrate the system’s utility in a head-fixed mouse experiment, synchronizing visual stimulus onset with neuronal recordings acquired via Neuropixels 2.0 probes. Performance comparisons with a commercial photodetector device indicate that our system achieves equivalent signal fidelity at a substantially lower cost, while maintaining a minimal footprint suitable for experimental use.</div></div>\",\"PeriodicalId\":37503,\"journal\":{\"name\":\"HardwareX\",\"volume\":\"23 \",\"pages\":\"Article e00677\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HardwareX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468067225000550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067225000550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
PhotoNeuro: A compact photodetector for synchronization of visual stimulus presentation during behavioural experiments in neuroscience
Presenting visual stimuli in neuroscience experiments often requires precise temporal alignment between visual events and electrophysiological or behavioural recordings. This is typically achieved by combining analogue signals that convey timing information about the visual cue shown on liquid crystal displays (LCDs), sensed via photodetectors and recorded through analogue-to-digital converter (ADC) acquisition boards. However, most commercial photodetector systems pose limitations such as high voltage requirements, large sensor footprints that interfere with stimulus presentation, and limited compatibility with open-source platforms. Here, we present a compact, low-cost photodetector system designed for compatibility with common 3.3–5 V microcontroller-based development boards (e.g., Arduino) and the open-source visual programming language Bonsai, widely used in neuroscience for experiment control. The circuit consists of a photodiode, an amplification stage, and a low-pass filter, and can optionally incorporate an infrared filter—useful for experiments involving infrared touch displays. To facilitate reproducibility, we provide complete design files, a bill of materials and detailed building and operational instructions. We further introduce a four-channel variant, enabling the detection of four-bit binary signals for more complex synchronization needs. Validation and characterization of the device were performed through grayscale gamma correction analysis of LCD monitors using Bonsai. Additionally, we demonstrate the system’s utility in a head-fixed mouse experiment, synchronizing visual stimulus onset with neuronal recordings acquired via Neuropixels 2.0 probes. Performance comparisons with a commercial photodetector device indicate that our system achieves equivalent signal fidelity at a substantially lower cost, while maintaining a minimal footprint suitable for experimental use.
HardwareXEngineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍:
HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.