{"title":"基于深度学习的GNSS时间序列建模与预测:自适应优化算法的比较分析","authors":"Mehmet Emin Tabar , Yasemin Sisman","doi":"10.1016/j.asr.2025.06.018","DOIUrl":null,"url":null,"abstract":"<div><div>In this research, optimization algorithms with adaptive learning rates on Global Navigation Satellite System (GNSS) time series data are comparatively investigated. For this purpose, five years of GNSS measurement data obtained from the AGRD station located in the Ağrı province of Türkiye were used and incorrect or missing records were detected for a total of 251 days in the dataset. After the missing data were completed using the linear interpolation method, a total of ten different deep learning methods and four different adaptive optimization algorithms (Adam, Adagrad, RMSprop and AdamW) were used to develop separate prediction models and performance evaluations were performed. When the performance of the best combination, the Adam optimized-GRU model, was evaluated based on Root Mean Square Error (RMSE) values, it was found to be 1.58 mm, 1.36 mm and 3.07 mm for the north, east and up components, respectively. When evaluated according to the Mean Absolute Error (MAE) value, it was found to be 1.20 mm, 1.05 mm, 2.33 mm, respectively. As a result of the comprehensive analyses, it has been revealed that Adam and AdamW algorithms are more effective than the others among the adaptive optimization algorithms examined and the deep learning models optimized with these algorithms exhibit superior prediction performance on GNSS time series data. It is thought that the results obtained from this study will be an important reference on adaptive learning optimization algorithms for future studies in the field of GNSS time series and deep learning and will guide the research on the subject.</div></div>","PeriodicalId":50850,"journal":{"name":"Advances in Space Research","volume":"76 4","pages":"Pages 2086-2103"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based modeling and prediction of GNSS time series: A comparative analysis of adaptive optimization algorithms\",\"authors\":\"Mehmet Emin Tabar , Yasemin Sisman\",\"doi\":\"10.1016/j.asr.2025.06.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this research, optimization algorithms with adaptive learning rates on Global Navigation Satellite System (GNSS) time series data are comparatively investigated. For this purpose, five years of GNSS measurement data obtained from the AGRD station located in the Ağrı province of Türkiye were used and incorrect or missing records were detected for a total of 251 days in the dataset. After the missing data were completed using the linear interpolation method, a total of ten different deep learning methods and four different adaptive optimization algorithms (Adam, Adagrad, RMSprop and AdamW) were used to develop separate prediction models and performance evaluations were performed. When the performance of the best combination, the Adam optimized-GRU model, was evaluated based on Root Mean Square Error (RMSE) values, it was found to be 1.58 mm, 1.36 mm and 3.07 mm for the north, east and up components, respectively. When evaluated according to the Mean Absolute Error (MAE) value, it was found to be 1.20 mm, 1.05 mm, 2.33 mm, respectively. As a result of the comprehensive analyses, it has been revealed that Adam and AdamW algorithms are more effective than the others among the adaptive optimization algorithms examined and the deep learning models optimized with these algorithms exhibit superior prediction performance on GNSS time series data. It is thought that the results obtained from this study will be an important reference on adaptive learning optimization algorithms for future studies in the field of GNSS time series and deep learning and will guide the research on the subject.</div></div>\",\"PeriodicalId\":50850,\"journal\":{\"name\":\"Advances in Space Research\",\"volume\":\"76 4\",\"pages\":\"Pages 2086-2103\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Space Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0273117725006131\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Space Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0273117725006131","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Deep learning-based modeling and prediction of GNSS time series: A comparative analysis of adaptive optimization algorithms
In this research, optimization algorithms with adaptive learning rates on Global Navigation Satellite System (GNSS) time series data are comparatively investigated. For this purpose, five years of GNSS measurement data obtained from the AGRD station located in the Ağrı province of Türkiye were used and incorrect or missing records were detected for a total of 251 days in the dataset. After the missing data were completed using the linear interpolation method, a total of ten different deep learning methods and four different adaptive optimization algorithms (Adam, Adagrad, RMSprop and AdamW) were used to develop separate prediction models and performance evaluations were performed. When the performance of the best combination, the Adam optimized-GRU model, was evaluated based on Root Mean Square Error (RMSE) values, it was found to be 1.58 mm, 1.36 mm and 3.07 mm for the north, east and up components, respectively. When evaluated according to the Mean Absolute Error (MAE) value, it was found to be 1.20 mm, 1.05 mm, 2.33 mm, respectively. As a result of the comprehensive analyses, it has been revealed that Adam and AdamW algorithms are more effective than the others among the adaptive optimization algorithms examined and the deep learning models optimized with these algorithms exhibit superior prediction performance on GNSS time series data. It is thought that the results obtained from this study will be an important reference on adaptive learning optimization algorithms for future studies in the field of GNSS time series and deep learning and will guide the research on the subject.
期刊介绍:
The COSPAR publication Advances in Space Research (ASR) is an open journal covering all areas of space research including: space studies of the Earth''s surface, meteorology, climate, the Earth-Moon system, planets and small bodies of the solar system, upper atmospheres, ionospheres and magnetospheres of the Earth and planets including reference atmospheres, space plasmas in the solar system, astrophysics from space, materials sciences in space, fundamental physics in space, space debris, space weather, Earth observations of space phenomena, etc.
NB: Please note that manuscripts related to life sciences as related to space are no more accepted for submission to Advances in Space Research. Such manuscripts should now be submitted to the new COSPAR Journal Life Sciences in Space Research (LSSR).
All submissions are reviewed by two scientists in the field. COSPAR is an interdisciplinary scientific organization concerned with the progress of space research on an international scale. Operating under the rules of ICSU, COSPAR ignores political considerations and considers all questions solely from the scientific viewpoint.