基于水平集的三维压电材料逆均匀化

IF 3.8 3区 工程技术 Q1 MECHANICS
Zachary J. Wegert, Anthony P. Roberts, Vivien J. Challis
{"title":"基于水平集的三维压电材料逆均匀化","authors":"Zachary J. Wegert,&nbsp;Anthony P. Roberts,&nbsp;Vivien J. Challis","doi":"10.1016/j.ijsolstr.2025.113551","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we use memory-distributed level set-based topology optimisation to design three-dimensional periodic piezoelectric materials with enhanced properties. We compare and assess several existing iterative solvers with respect to their weak scalability and find that an approximate Schur complement preconditioned generalised minimal residual method demonstrates the best performance and scalability for solving the piezoelectric homogenisation equations. We use the developed techniques to computationally design high-resolution piezoelectric metamaterials with enhanced stiffness and piezoelectric properties that yield new insights into material design for sensor, hydrophone, and actuator applications. We suggest two robust structures with no fine-scale features that exhibit enhanced piezoelectric properties several times larger than those of the base material. We find that level set-based topology optimisation is well suited to problems involving piezoelectricity and has the advantage of avoiding large regions of intermediate density material. Our memory-distributed level-set implementation is open source and provided for practitioners in the community.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"321 ","pages":"Article 113551"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Level set-based inverse homogenisation of three-dimensional piezoelectric materials\",\"authors\":\"Zachary J. Wegert,&nbsp;Anthony P. Roberts,&nbsp;Vivien J. Challis\",\"doi\":\"10.1016/j.ijsolstr.2025.113551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we use memory-distributed level set-based topology optimisation to design three-dimensional periodic piezoelectric materials with enhanced properties. We compare and assess several existing iterative solvers with respect to their weak scalability and find that an approximate Schur complement preconditioned generalised minimal residual method demonstrates the best performance and scalability for solving the piezoelectric homogenisation equations. We use the developed techniques to computationally design high-resolution piezoelectric metamaterials with enhanced stiffness and piezoelectric properties that yield new insights into material design for sensor, hydrophone, and actuator applications. We suggest two robust structures with no fine-scale features that exhibit enhanced piezoelectric properties several times larger than those of the base material. We find that level set-based topology optimisation is well suited to problems involving piezoelectricity and has the advantage of avoiding large regions of intermediate density material. Our memory-distributed level-set implementation is open source and provided for practitioners in the community.</div></div>\",\"PeriodicalId\":14311,\"journal\":{\"name\":\"International Journal of Solids and Structures\",\"volume\":\"321 \",\"pages\":\"Article 113551\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Solids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020768325003373\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768325003373","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本文采用基于记忆分布水平集的拓扑优化方法设计了具有增强性能的三维周期性压电材料。我们比较和评估了几种现有的迭代求解方法的弱可扩展性,发现近似Schur补预条件广义最小残差法在求解压电均匀化方程方面表现出最佳的性能和可扩展性。我们使用开发的技术来计算设计具有增强刚度和压电特性的高分辨率压电超材料,为传感器,水听器和致动器应用的材料设计提供新的见解。我们提出了两种坚固的结构,没有精细尺度特征,表现出比基材大几倍的增强压电性能。我们发现基于水平集的拓扑优化非常适合于涉及压电的问题,并且具有避免大面积中密度材料的优势。我们的内存分布式级别集实现是开源的,并为社区中的从业者提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Level set-based inverse homogenisation of three-dimensional piezoelectric materials
In this paper we use memory-distributed level set-based topology optimisation to design three-dimensional periodic piezoelectric materials with enhanced properties. We compare and assess several existing iterative solvers with respect to their weak scalability and find that an approximate Schur complement preconditioned generalised minimal residual method demonstrates the best performance and scalability for solving the piezoelectric homogenisation equations. We use the developed techniques to computationally design high-resolution piezoelectric metamaterials with enhanced stiffness and piezoelectric properties that yield new insights into material design for sensor, hydrophone, and actuator applications. We suggest two robust structures with no fine-scale features that exhibit enhanced piezoelectric properties several times larger than those of the base material. We find that level set-based topology optimisation is well suited to problems involving piezoelectricity and has the advantage of avoiding large regions of intermediate density material. Our memory-distributed level-set implementation is open source and provided for practitioners in the community.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
8.30%
发文量
405
审稿时长
70 days
期刊介绍: The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field. Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信