Muchen Du, Shida Huo, Luojun Du, Yaxian Wang, Enxiu Wu
{"title":"ii型Weyl半金属TaIrTe4中电子-声子耦合的证据","authors":"Muchen Du, Shida Huo, Luojun Du, Yaxian Wang, Enxiu Wu","doi":"10.1063/5.0272031","DOIUrl":null,"url":null,"abstract":"TaIrTe4, a time-reversal symmetric Weyl semimetal with the allowed minimum Weyl points, has sparked considerable attention and is appealing for a myriad of intriguing physical phenomena, including chiral anomaly, nonlinear Hall effect, dual quantum spin Hall insulator, and superconductivity. However, the electron–phonon coupling central to understanding the fundamental properties remains largely unexplored. In this work, we demonstrate the tell-tale signature of electron–phonon coupling in the type-II Weyl semimetal TaIrTe4 employing temperature-dependent Raman spectroscopy. Our results reveal that the temperature-dependent energy and lifetime of A1 phonon mode at ∼172 cm−1 diverge from the anharmonic model, evidencing the dominated role of phonon–electron rather than phonon–phonon scattering in phonon decay. The theoretically calculated electron–phonon coupling matrix element of the A1 mode is 0.39 eV, indicating substantial coupling to the electronic state. Our findings provide meaningful insights into understanding the fascinating physical properties and quantum phenomena of Weyl semimetal TaIrTe4.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"95 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evidence of electron–phonon coupling in type-II Weyl semimetal TaIrTe4\",\"authors\":\"Muchen Du, Shida Huo, Luojun Du, Yaxian Wang, Enxiu Wu\",\"doi\":\"10.1063/5.0272031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"TaIrTe4, a time-reversal symmetric Weyl semimetal with the allowed minimum Weyl points, has sparked considerable attention and is appealing for a myriad of intriguing physical phenomena, including chiral anomaly, nonlinear Hall effect, dual quantum spin Hall insulator, and superconductivity. However, the electron–phonon coupling central to understanding the fundamental properties remains largely unexplored. In this work, we demonstrate the tell-tale signature of electron–phonon coupling in the type-II Weyl semimetal TaIrTe4 employing temperature-dependent Raman spectroscopy. Our results reveal that the temperature-dependent energy and lifetime of A1 phonon mode at ∼172 cm−1 diverge from the anharmonic model, evidencing the dominated role of phonon–electron rather than phonon–phonon scattering in phonon decay. The theoretically calculated electron–phonon coupling matrix element of the A1 mode is 0.39 eV, indicating substantial coupling to the electronic state. Our findings provide meaningful insights into understanding the fascinating physical properties and quantum phenomena of Weyl semimetal TaIrTe4.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0272031\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0272031","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Evidence of electron–phonon coupling in type-II Weyl semimetal TaIrTe4
TaIrTe4, a time-reversal symmetric Weyl semimetal with the allowed minimum Weyl points, has sparked considerable attention and is appealing for a myriad of intriguing physical phenomena, including chiral anomaly, nonlinear Hall effect, dual quantum spin Hall insulator, and superconductivity. However, the electron–phonon coupling central to understanding the fundamental properties remains largely unexplored. In this work, we demonstrate the tell-tale signature of electron–phonon coupling in the type-II Weyl semimetal TaIrTe4 employing temperature-dependent Raman spectroscopy. Our results reveal that the temperature-dependent energy and lifetime of A1 phonon mode at ∼172 cm−1 diverge from the anharmonic model, evidencing the dominated role of phonon–electron rather than phonon–phonon scattering in phonon decay. The theoretically calculated electron–phonon coupling matrix element of the A1 mode is 0.39 eV, indicating substantial coupling to the electronic state. Our findings provide meaningful insights into understanding the fascinating physical properties and quantum phenomena of Weyl semimetal TaIrTe4.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.