ZnGa2Te4薄膜吸收剂用于光电化学CO2还原

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Shaham Quadir, Yungchieh Lai, Melissa K. Gish, John S. Mangum, Wayne Zhao, Ruo Xi Yang, Mona Abdelgaid, Christopher P. Muzzillo, Kristin A. Persson, Joel A. Haber, Sage R. Bauers and Andriy Zakutayev
{"title":"ZnGa2Te4薄膜吸收剂用于光电化学CO2还原","authors":"Shaham Quadir, Yungchieh Lai, Melissa K. Gish, John S. Mangum, Wayne Zhao, Ruo Xi Yang, Mona Abdelgaid, Christopher P. Muzzillo, Kristin A. Persson, Joel A. Haber, Sage R. Bauers and Andriy Zakutayev","doi":"10.1039/D5TA02891D","DOIUrl":null,"url":null,"abstract":"<p >Photoelectrochemical (PEC) carbon dioxide reduction reaction (CO<small><sub>2</sub></small>RR) has been considered as a promising route to convert and store solar energy into chemical fuels. It is crucial to find suitable photoelectrode materials that are photo-catalytically active and exhibit excellent photochemical stability. One of the promising contenders is ZnTe with the ∼2.26 eV band gap and prolonged stability under CO<small><sub>2</sub></small>RR PEC conditions. Herein, a new telluride based thin-film ZnGa<small><sub>2</sub></small>Te<small><sub>4</sub></small> photocathode with lower band gap and stronger visible light absorption compared to ZnTe is synthesized and characterized using a combinatorial sputtering technique. A two-step annealing method with excess Te supply is implemented to synthesize nearly stoichiometric ZnGa<small><sub>2</sub></small>Te<small><sub>4</sub></small> absorber material with a zincblende-derived tetragonal crystal structure confirmed by synchrotron X-ray and electron diffraction. Theoretical calculations show that ZnGa<small><sub>2</sub></small>Te<small><sub>4</sub></small> has suitable direct bandgap (∼1.86 eV) and high absorption coefficient ∼10<small><sup>5</sup></small> cm<small><sup>−1</sup></small>, in agreement with experimentally prepared films. Transient absorption spectroscopy reveals the biexponential decay dynamics, with time constants, <em>τ</em><small><sub>1</sub></small> ∼ 0.04, and <em>τ</em><small><sub>2</sub></small> ∼ 0.65 μs in microsecond time scales and provides the optical transition pathways for this semiconductor thin film. PEC measurements show that the ZnGa<small><sub>2</sub></small>Te<small><sub>4</sub></small> photocurrent densities are comparable to the widely investigated ZnTe photocathodes or even surpass it under simulated sunlight condition. ZnGa<small><sub>2</sub></small>Te<small><sub>4</sub></small> samples demonstrate promising photoelectrochemical stability, maintaining consistent performance under illumination. The inclusion of diaryliodonium additive substantially increases its CO<small><sub>2</sub></small>RR selectivity to ∼60%. These findings open a new avenue for the synthesis of telluride-based thin-film photocathodes for further exploration and will motivate future research to integrate this potential photocathode material into PEC devices.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 32","pages":" 26364-26376"},"PeriodicalIF":9.5000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d5ta02891d?page=search","citationCount":"0","resultStr":"{\"title\":\"ZnGa2Te4 thin-film absorbers for photoelectrochemical CO2 reduction†\",\"authors\":\"Shaham Quadir, Yungchieh Lai, Melissa K. Gish, John S. Mangum, Wayne Zhao, Ruo Xi Yang, Mona Abdelgaid, Christopher P. Muzzillo, Kristin A. Persson, Joel A. Haber, Sage R. Bauers and Andriy Zakutayev\",\"doi\":\"10.1039/D5TA02891D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Photoelectrochemical (PEC) carbon dioxide reduction reaction (CO<small><sub>2</sub></small>RR) has been considered as a promising route to convert and store solar energy into chemical fuels. It is crucial to find suitable photoelectrode materials that are photo-catalytically active and exhibit excellent photochemical stability. One of the promising contenders is ZnTe with the ∼2.26 eV band gap and prolonged stability under CO<small><sub>2</sub></small>RR PEC conditions. Herein, a new telluride based thin-film ZnGa<small><sub>2</sub></small>Te<small><sub>4</sub></small> photocathode with lower band gap and stronger visible light absorption compared to ZnTe is synthesized and characterized using a combinatorial sputtering technique. A two-step annealing method with excess Te supply is implemented to synthesize nearly stoichiometric ZnGa<small><sub>2</sub></small>Te<small><sub>4</sub></small> absorber material with a zincblende-derived tetragonal crystal structure confirmed by synchrotron X-ray and electron diffraction. Theoretical calculations show that ZnGa<small><sub>2</sub></small>Te<small><sub>4</sub></small> has suitable direct bandgap (∼1.86 eV) and high absorption coefficient ∼10<small><sup>5</sup></small> cm<small><sup>−1</sup></small>, in agreement with experimentally prepared films. Transient absorption spectroscopy reveals the biexponential decay dynamics, with time constants, <em>τ</em><small><sub>1</sub></small> ∼ 0.04, and <em>τ</em><small><sub>2</sub></small> ∼ 0.65 μs in microsecond time scales and provides the optical transition pathways for this semiconductor thin film. PEC measurements show that the ZnGa<small><sub>2</sub></small>Te<small><sub>4</sub></small> photocurrent densities are comparable to the widely investigated ZnTe photocathodes or even surpass it under simulated sunlight condition. ZnGa<small><sub>2</sub></small>Te<small><sub>4</sub></small> samples demonstrate promising photoelectrochemical stability, maintaining consistent performance under illumination. The inclusion of diaryliodonium additive substantially increases its CO<small><sub>2</sub></small>RR selectivity to ∼60%. These findings open a new avenue for the synthesis of telluride-based thin-film photocathodes for further exploration and will motivate future research to integrate this potential photocathode material into PEC devices.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 32\",\"pages\":\" 26364-26376\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d5ta02891d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta02891d\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta02891d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

光电化学(PEC)二氧化碳还原反应(CO2RR)被认为是将太阳能转化为化学燃料的一种有前途的途径。找到合适的光电极材料是至关重要的,它是光催化活性和表现出优异的光化学稳定性。其中一个有希望的竞争者是ZnTe,其带隙为~ 2.26 eV,在CO2RR PEC条件下具有较长的稳定性。本文采用组合溅射技术合成了一种比ZnTe具有更小带隙和更强可见光吸收的新型碲化薄膜ZnGa2Te4光电阴极。采用两步退火法合成了近化学计量的zga2te4吸收材料,并经同步加速器x射线和电子衍射证实,该吸收材料具有由锌衍生的四方晶体结构。理论计算表明,ZnGa2Te4具有合适的直接带隙(~ 1.86 eV)和高吸收系数(~ 105 cm−1),与实验制备的薄膜一致。瞬态吸收光谱揭示了双指数衰减动力学,时间常数分别为τ1 ~ 0.04和τ2 ~ 0.65 μs(微秒时间尺度),并提供了该半导体薄膜的光跃迁路径。PEC测量表明,在模拟阳光条件下,ZnGa2Te4光电流密度与广泛研究的ZnTe光电阴极相当,甚至超过它。ZnGa2Te4样品表现出良好的光电化学稳定性,在光照下保持一致的性能。二芳基碘鎓添加剂的加入大大提高了其CO2RR选择性至60%。这些发现为进一步探索碲基薄膜光电阴极的合成开辟了新的途径,并将激励未来的研究将这种潜在的光电阴极材料集成到PEC器件中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

ZnGa2Te4 thin-film absorbers for photoelectrochemical CO2 reduction†

ZnGa2Te4 thin-film absorbers for photoelectrochemical CO2 reduction†

ZnGa2Te4 thin-film absorbers for photoelectrochemical CO2 reduction†

Photoelectrochemical (PEC) carbon dioxide reduction reaction (CO2RR) has been considered as a promising route to convert and store solar energy into chemical fuels. It is crucial to find suitable photoelectrode materials that are photo-catalytically active and exhibit excellent photochemical stability. One of the promising contenders is ZnTe with the ∼2.26 eV band gap and prolonged stability under CO2RR PEC conditions. Herein, a new telluride based thin-film ZnGa2Te4 photocathode with lower band gap and stronger visible light absorption compared to ZnTe is synthesized and characterized using a combinatorial sputtering technique. A two-step annealing method with excess Te supply is implemented to synthesize nearly stoichiometric ZnGa2Te4 absorber material with a zincblende-derived tetragonal crystal structure confirmed by synchrotron X-ray and electron diffraction. Theoretical calculations show that ZnGa2Te4 has suitable direct bandgap (∼1.86 eV) and high absorption coefficient ∼105 cm−1, in agreement with experimentally prepared films. Transient absorption spectroscopy reveals the biexponential decay dynamics, with time constants, τ1 ∼ 0.04, and τ2 ∼ 0.65 μs in microsecond time scales and provides the optical transition pathways for this semiconductor thin film. PEC measurements show that the ZnGa2Te4 photocurrent densities are comparable to the widely investigated ZnTe photocathodes or even surpass it under simulated sunlight condition. ZnGa2Te4 samples demonstrate promising photoelectrochemical stability, maintaining consistent performance under illumination. The inclusion of diaryliodonium additive substantially increases its CO2RR selectivity to ∼60%. These findings open a new avenue for the synthesis of telluride-based thin-film photocathodes for further exploration and will motivate future research to integrate this potential photocathode material into PEC devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信