Ori Plonsky, Reut Apel, Eyal Ert, Moshe Tennenholtz, David Bourgin, Joshua C. Peterson, Daniel Reichman, Thomas L. Griffiths, Stuart J. Russell, Even C. Carter, James F. Cavanagh, Ido Erev
{"title":"用行为理论和机器学习预测人类的决策","authors":"Ori Plonsky, Reut Apel, Eyal Ert, Moshe Tennenholtz, David Bourgin, Joshua C. Peterson, Daniel Reichman, Thomas L. Griffiths, Stuart J. Russell, Even C. Carter, James F. Cavanagh, Ido Erev","doi":"10.1038/s41562-025-02267-6","DOIUrl":null,"url":null,"abstract":"<p>Predicting human decisions under risk and uncertainty remains a fundamental challenge across disciplines. Existing models often struggle even in highly stylized tasks like choice between lotteries. Here we introduce BEAST gradient boosting (BEAST-GB), a hybrid model integrating behavioural theory (BEAST) with machine learning. We first present CPC18, a competition for predicting risky choice, in which BEAST-GB won. Then, using two large datasets, we demonstrate that BEAST-GB predicts more accurately than neural networks trained on extensive data and dozens of existing behavioural models. BEAST-GB also generalizes robustly across unseen experimental contexts, surpassing direct empirical generalization, and helps to refine and improve the behavioural theory itself. Our analyses highlight the potential of anchoring predictions on behavioural theory even in data-rich settings and even when the theory alone falters. Our results underscore how integrating machine learning with theoretical frameworks, especially those—like BEAST—designed for prediction, can improve our ability to predict and understand human behaviour.</p>","PeriodicalId":19074,"journal":{"name":"Nature Human Behaviour","volume":"9 1","pages":""},"PeriodicalIF":21.4000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting human decisions with behavioural theories and machine learning\",\"authors\":\"Ori Plonsky, Reut Apel, Eyal Ert, Moshe Tennenholtz, David Bourgin, Joshua C. Peterson, Daniel Reichman, Thomas L. Griffiths, Stuart J. Russell, Even C. Carter, James F. Cavanagh, Ido Erev\",\"doi\":\"10.1038/s41562-025-02267-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Predicting human decisions under risk and uncertainty remains a fundamental challenge across disciplines. Existing models often struggle even in highly stylized tasks like choice between lotteries. Here we introduce BEAST gradient boosting (BEAST-GB), a hybrid model integrating behavioural theory (BEAST) with machine learning. We first present CPC18, a competition for predicting risky choice, in which BEAST-GB won. Then, using two large datasets, we demonstrate that BEAST-GB predicts more accurately than neural networks trained on extensive data and dozens of existing behavioural models. BEAST-GB also generalizes robustly across unseen experimental contexts, surpassing direct empirical generalization, and helps to refine and improve the behavioural theory itself. Our analyses highlight the potential of anchoring predictions on behavioural theory even in data-rich settings and even when the theory alone falters. Our results underscore how integrating machine learning with theoretical frameworks, especially those—like BEAST—designed for prediction, can improve our ability to predict and understand human behaviour.</p>\",\"PeriodicalId\":19074,\"journal\":{\"name\":\"Nature Human Behaviour\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":21.4000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Human Behaviour\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1038/s41562-025-02267-6\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Human Behaviour","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1038/s41562-025-02267-6","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Predicting human decisions with behavioural theories and machine learning
Predicting human decisions under risk and uncertainty remains a fundamental challenge across disciplines. Existing models often struggle even in highly stylized tasks like choice between lotteries. Here we introduce BEAST gradient boosting (BEAST-GB), a hybrid model integrating behavioural theory (BEAST) with machine learning. We first present CPC18, a competition for predicting risky choice, in which BEAST-GB won. Then, using two large datasets, we demonstrate that BEAST-GB predicts more accurately than neural networks trained on extensive data and dozens of existing behavioural models. BEAST-GB also generalizes robustly across unseen experimental contexts, surpassing direct empirical generalization, and helps to refine and improve the behavioural theory itself. Our analyses highlight the potential of anchoring predictions on behavioural theory even in data-rich settings and even when the theory alone falters. Our results underscore how integrating machine learning with theoretical frameworks, especially those—like BEAST—designed for prediction, can improve our ability to predict and understand human behaviour.
期刊介绍:
Nature Human Behaviour is a journal that focuses on publishing research of outstanding significance into any aspect of human behavior.The research can cover various areas such as psychological, biological, and social bases of human behavior.It also includes the study of origins, development, and disorders related to human behavior.The primary aim of the journal is to increase the visibility of research in the field and enhance its societal reach and impact.