电荷补偿使K0.16Na0.05(NH4)0.71 v4010 -x·0.63H2O阴极具有可调谐的晶格应变,从而实现高效的Zn2+存储

IF 3.3 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Xueke Zhu, Dong Fang, Lang Zhang and Jianhong Yi
{"title":"电荷补偿使K0.16Na0.05(NH4)0.71 v4010 -x·0.63H2O阴极具有可调谐的晶格应变,从而实现高效的Zn2+存储","authors":"Xueke Zhu, Dong Fang, Lang Zhang and Jianhong Yi","doi":"10.1039/D5DT01363A","DOIUrl":null,"url":null,"abstract":"<p >The major challenges in using NH<small><sub>4</sub></small>V<small><sub>4</sub></small>O<small><sub>10</sub></small> as a cathode for aqueous zinc-ion batteries (AZIBs) are its unsatisfactory structural stability and carrier migration coefficient due to the accumulated lattice strain during cycling. Herein, we developed a K<small><sub>0.16</sub></small>Na<small><sub>0.05</sub></small>(NH<small><sub>4</sub></small>)<small><sub>0.71</sub></small>V<small><sub>4</sub></small>O<small><sub>10−<em>x</em></sub></small>·0.63H<small><sub>2</sub></small>O (NaKNVOH) cathode to achieve a continuous contribution of cathode structure for Zn<small><sup>2+</sup></small> storage at both low and high current density. Both experimental data and DFT calculations confirmed that the charge compensation of Na<small><sup>+</sup></small> and K<small><sup>+</sup></small> not only reinforced the host structure but also enriched the active sites for Zn<small><sup>2+</sup></small> migration. Especially, the structure-led charge compensation effectively alleviated the lattice strain accumulation during prolonged cycling. The NaKNVOH cathode delivered a specific capacity of 495.4 mAh g<small><sup>−1</sup></small> at 0.5 A g<small><sup>−1</sup></small>, a rate capability of 177.8 mAh g<small><sup>−1</sup></small> at 4 A g<small><sup>−1</sup></small>, and excellent cycle life and capacity retention at current densities of 0.5 A g<small><sup>−1</sup></small> (300 cycles, 94.2%) and 4 A g<small><sup>−1</sup></small> (2000 cycles, 96.57%).</p>","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":" 33","pages":" 12516-12523"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Charge compensation endows K0.16Na0.05(NH4)0.71V4O10−x·0.63H2O cathode with tunable lattice strain for efficient Zn2+ storage\",\"authors\":\"Xueke Zhu, Dong Fang, Lang Zhang and Jianhong Yi\",\"doi\":\"10.1039/D5DT01363A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The major challenges in using NH<small><sub>4</sub></small>V<small><sub>4</sub></small>O<small><sub>10</sub></small> as a cathode for aqueous zinc-ion batteries (AZIBs) are its unsatisfactory structural stability and carrier migration coefficient due to the accumulated lattice strain during cycling. Herein, we developed a K<small><sub>0.16</sub></small>Na<small><sub>0.05</sub></small>(NH<small><sub>4</sub></small>)<small><sub>0.71</sub></small>V<small><sub>4</sub></small>O<small><sub>10−<em>x</em></sub></small>·0.63H<small><sub>2</sub></small>O (NaKNVOH) cathode to achieve a continuous contribution of cathode structure for Zn<small><sup>2+</sup></small> storage at both low and high current density. Both experimental data and DFT calculations confirmed that the charge compensation of Na<small><sup>+</sup></small> and K<small><sup>+</sup></small> not only reinforced the host structure but also enriched the active sites for Zn<small><sup>2+</sup></small> migration. Especially, the structure-led charge compensation effectively alleviated the lattice strain accumulation during prolonged cycling. The NaKNVOH cathode delivered a specific capacity of 495.4 mAh g<small><sup>−1</sup></small> at 0.5 A g<small><sup>−1</sup></small>, a rate capability of 177.8 mAh g<small><sup>−1</sup></small> at 4 A g<small><sup>−1</sup></small>, and excellent cycle life and capacity retention at current densities of 0.5 A g<small><sup>−1</sup></small> (300 cycles, 94.2%) and 4 A g<small><sup>−1</sup></small> (2000 cycles, 96.57%).</p>\",\"PeriodicalId\":71,\"journal\":{\"name\":\"Dalton Transactions\",\"volume\":\" 33\",\"pages\":\" 12516-12523\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dalton Transactions\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/dt/d5dt01363a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dt/d5dt01363a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

NH4V4O10对水性锌离子电池(AZIBs)的主要挑战是由于循环过程中晶格应变的累积,其结构稳定性和载流子迁移系数不理想。在此,我们开发了K0.16Na0.05(NH4)0.71 v4010 -x·0.63H2O (NaKNVOH)阴极,以实现阴极结构对Zn2+低电流密度和高电流密度存储的持续贡献。实验数据和DFT计算均证实了Na+和K+的电荷补偿不仅强化了主结构,而且丰富了Zn2+迁移的活性位点。特别是,结构主导的电荷补偿有效地缓解了长时间循环过程中晶格应变的积累。正如预期的那样,NaKNVOH阴极在0.5 a g-1的速度下提供495.4 mAh的g-⁻,在4 a g-1的速度下提供177.8 mAh的g-⁻,以及0.5(300次,94.2%)和4 a g-⁻(2000次,96.57%)的优良循环寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Charge compensation endows K0.16Na0.05(NH4)0.71V4O10−x·0.63H2O cathode with tunable lattice strain for efficient Zn2+ storage

Charge compensation endows K0.16Na0.05(NH4)0.71V4O10−x·0.63H2O cathode with tunable lattice strain for efficient Zn2+ storage

The major challenges in using NH4V4O10 as a cathode for aqueous zinc-ion batteries (AZIBs) are its unsatisfactory structural stability and carrier migration coefficient due to the accumulated lattice strain during cycling. Herein, we developed a K0.16Na0.05(NH4)0.71V4O10−x·0.63H2O (NaKNVOH) cathode to achieve a continuous contribution of cathode structure for Zn2+ storage at both low and high current density. Both experimental data and DFT calculations confirmed that the charge compensation of Na+ and K+ not only reinforced the host structure but also enriched the active sites for Zn2+ migration. Especially, the structure-led charge compensation effectively alleviated the lattice strain accumulation during prolonged cycling. The NaKNVOH cathode delivered a specific capacity of 495.4 mAh g−1 at 0.5 A g−1, a rate capability of 177.8 mAh g−1 at 4 A g−1, and excellent cycle life and capacity retention at current densities of 0.5 A g−1 (300 cycles, 94.2%) and 4 A g−1 (2000 cycles, 96.57%).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dalton Transactions
Dalton Transactions 化学-无机化学与核化学
CiteScore
6.60
自引率
7.50%
发文量
1832
审稿时长
1.5 months
期刊介绍: Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信