基于Marangoni诱导自组装的网状银纳米线网络用于物理上不可克隆的标签

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yun Ah Kim, Changgyun Moon, Sunkook Kim, Byungkwon Lim
{"title":"基于Marangoni诱导自组装的网状银纳米线网络用于物理上不可克隆的标签","authors":"Yun Ah Kim, Changgyun Moon, Sunkook Kim, Byungkwon Lim","doi":"10.1002/adfm.202508556","DOIUrl":null,"url":null,"abstract":"A silver (Ag) nanoweb‐based physically unclonable tag (PUT) is developed using a photolithography process to enhance security and authentication applications. The Ag nanoweb structure is fabricated via Marangoni‐driven self‐assembly, where solvent evaporation induces surface tension gradients, leading to the random yet process‐consistent patterning of Ag nanowires (Ag NWs) on a substrate. The ink formulation, comprising a binary solvent system, controls the evaporation rate and the resulting nanoweb morphology. The PUTs are patterned using a metal mask and characterized through darkfield microscopy, which enhances the visibility of the Ag NW bundles and allows for efficient binary key extraction. Variations in solvent composition and coating temperature influence the bundling behavior of Ag NWs, affecting surface roughness and optical properties. The optimized conditions yield highly transparent, uniquely structured PUTs that exhibit strong resistance to counterfeiting due to their inherent randomness. The extracted binary keys show performance metrics close to the ideal values, with an encoding capacity of 2<jats:sup>976.48</jats:sup>, corresponding to 95.37% of the theoretical maximum. The findings provide insights into the role of Marangoni flow in controlling the assembly of nanomaterials and highlight the potential of Ag nanoweb‐based PUTs in scalable and secure authentication applications.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"10 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Web‐Like Silver Nanowire Networks via Marangoni‐Induced Self‐Assembly for Physically Unclonable Tags\",\"authors\":\"Yun Ah Kim, Changgyun Moon, Sunkook Kim, Byungkwon Lim\",\"doi\":\"10.1002/adfm.202508556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A silver (Ag) nanoweb‐based physically unclonable tag (PUT) is developed using a photolithography process to enhance security and authentication applications. The Ag nanoweb structure is fabricated via Marangoni‐driven self‐assembly, where solvent evaporation induces surface tension gradients, leading to the random yet process‐consistent patterning of Ag nanowires (Ag NWs) on a substrate. The ink formulation, comprising a binary solvent system, controls the evaporation rate and the resulting nanoweb morphology. The PUTs are patterned using a metal mask and characterized through darkfield microscopy, which enhances the visibility of the Ag NW bundles and allows for efficient binary key extraction. Variations in solvent composition and coating temperature influence the bundling behavior of Ag NWs, affecting surface roughness and optical properties. The optimized conditions yield highly transparent, uniquely structured PUTs that exhibit strong resistance to counterfeiting due to their inherent randomness. The extracted binary keys show performance metrics close to the ideal values, with an encoding capacity of 2<jats:sup>976.48</jats:sup>, corresponding to 95.37% of the theoretical maximum. The findings provide insights into the role of Marangoni flow in controlling the assembly of nanomaterials and highlight the potential of Ag nanoweb‐based PUTs in scalable and secure authentication applications.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202508556\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202508556","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用光刻工艺开发了一种基于银(Ag)纳米网的物理不可克隆标签(PUT),以增强安全性和认证应用。银纳米网结构是通过Marangoni驱动的自组装制造的,其中溶剂蒸发引起表面张力梯度,导致银纳米线(Ag NWs)在衬底上的随机但过程一致的图案。油墨配方,包括一个二元溶剂系统,控制蒸发速率和产生的纳米网形态。put使用金属掩模进行图案化,并通过暗场显微镜进行表征,这增强了Ag NW束的可见性,并允许有效的二进制密钥提取。溶剂组成和涂层温度的变化会影响Ag NWs的成束行为,从而影响表面粗糙度和光学性能。优化后的条件产生高度透明、结构独特的put,由于其固有的随机性,具有很强的防伪能力。提取的二进制密钥的性能指标接近理想值,编码容量为2976.48,相当于理论最大值的95.37%。这些发现为马兰戈尼流在控制纳米材料组装中的作用提供了见解,并强调了基于银纳米网的put在可扩展和安全认证应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Web‐Like Silver Nanowire Networks via Marangoni‐Induced Self‐Assembly for Physically Unclonable Tags
A silver (Ag) nanoweb‐based physically unclonable tag (PUT) is developed using a photolithography process to enhance security and authentication applications. The Ag nanoweb structure is fabricated via Marangoni‐driven self‐assembly, where solvent evaporation induces surface tension gradients, leading to the random yet process‐consistent patterning of Ag nanowires (Ag NWs) on a substrate. The ink formulation, comprising a binary solvent system, controls the evaporation rate and the resulting nanoweb morphology. The PUTs are patterned using a metal mask and characterized through darkfield microscopy, which enhances the visibility of the Ag NW bundles and allows for efficient binary key extraction. Variations in solvent composition and coating temperature influence the bundling behavior of Ag NWs, affecting surface roughness and optical properties. The optimized conditions yield highly transparent, uniquely structured PUTs that exhibit strong resistance to counterfeiting due to their inherent randomness. The extracted binary keys show performance metrics close to the ideal values, with an encoding capacity of 2976.48, corresponding to 95.37% of the theoretical maximum. The findings provide insights into the role of Marangoni flow in controlling the assembly of nanomaterials and highlight the potential of Ag nanoweb‐based PUTs in scalable and secure authentication applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信