凝胶级转化:定制银基气凝胶用于增强电催化

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Beibei Weng, Xiaoyue Sun, De‐Yi Zhang, Ning Wang, René Hübner, Jiaxuan Hu, Jingwen Zhao, Shuna Hao, Qian Cui, Huan Wang, Ran Du
{"title":"凝胶级转化:定制银基气凝胶用于增强电催化","authors":"Beibei Weng, Xiaoyue Sun, De‐Yi Zhang, Ning Wang, René Hübner, Jiaxuan Hu, Jingwen Zhao, Shuna Hao, Qian Cui, Huan Wang, Ran Du","doi":"10.1002/adfm.202514345","DOIUrl":null,"url":null,"abstract":"As a well‐known coin metal, silver (Ag) stands out for its unique plasmonic properties and the lowest cost among all noble metals. However, the sol–gel chemistry of the Ag system remains undeciphered, challenging the rational design of Ag aerogels. Additionally, the chemical reactivity of Ag is often neglected in designing noble metal aerogels (NMAs), leaving significant potential untapped for advanced applications. Here, versatile engineering of Ag aerogels is realized by precisely tuning metal‐ion, metal‐ligand, and metal‐metal interactions, achieving a ligament size modulation across 3 orders of magnitude and downsizing the ligament size to &lt;10 nm. The redox potential difference (Δ<jats:italic>E</jats:italic>)‐driven gel‐level conversion methodology is further established by utilizing the chemical activity of Ag and the self‐healing properties of noble metal hydrogels, stepwise yielding various self‐standing and hollow‐structured Ag‐M aerogels with record‐high performance for (photo)electrocatalysis. This study not only offers guidelines for manipulating multiscale structures of broad metal aerogels but also unveils their unprecedented potential for energy‐related applications.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"208 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gel‐Level Conversion: Customizing Silver‐Based Aerogels for Enhanced Electrocatalysis\",\"authors\":\"Beibei Weng, Xiaoyue Sun, De‐Yi Zhang, Ning Wang, René Hübner, Jiaxuan Hu, Jingwen Zhao, Shuna Hao, Qian Cui, Huan Wang, Ran Du\",\"doi\":\"10.1002/adfm.202514345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a well‐known coin metal, silver (Ag) stands out for its unique plasmonic properties and the lowest cost among all noble metals. However, the sol–gel chemistry of the Ag system remains undeciphered, challenging the rational design of Ag aerogels. Additionally, the chemical reactivity of Ag is often neglected in designing noble metal aerogels (NMAs), leaving significant potential untapped for advanced applications. Here, versatile engineering of Ag aerogels is realized by precisely tuning metal‐ion, metal‐ligand, and metal‐metal interactions, achieving a ligament size modulation across 3 orders of magnitude and downsizing the ligament size to &lt;10 nm. The redox potential difference (Δ<jats:italic>E</jats:italic>)‐driven gel‐level conversion methodology is further established by utilizing the chemical activity of Ag and the self‐healing properties of noble metal hydrogels, stepwise yielding various self‐standing and hollow‐structured Ag‐M aerogels with record‐high performance for (photo)electrocatalysis. This study not only offers guidelines for manipulating multiscale structures of broad metal aerogels but also unveils their unprecedented potential for energy‐related applications.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"208 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202514345\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202514345","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

作为一种众所周知的硬币金属,银(Ag)以其独特的等离子体特性和在所有贵金属中最低的成本脱颖而出。然而,银体系的溶胶-凝胶化学仍然未被破译,这对银凝胶的合理设计提出了挑战。此外,在设计贵金属气凝胶(nma)时,银的化学反应性往往被忽视,这给其在高级应用方面留下了巨大的潜力。在这里,通过精确调节金属离子、金属配体和金属-金属相互作用,实现了银凝胶的多用途工程,实现了3个数量级的韧带尺寸调制,并将韧带尺寸缩小到10nm。利用银的化学活性和贵金属水凝胶的自愈特性,进一步建立了氧化还原电位差(ΔE)驱动的凝胶级转化方法,逐步产生各种具有(光)电催化性能的自立和空心结构Ag - M气凝胶。这项研究不仅为操纵宽金属气凝胶的多尺度结构提供了指导,而且揭示了其在能源相关应用方面前所未有的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gel‐Level Conversion: Customizing Silver‐Based Aerogels for Enhanced Electrocatalysis
As a well‐known coin metal, silver (Ag) stands out for its unique plasmonic properties and the lowest cost among all noble metals. However, the sol–gel chemistry of the Ag system remains undeciphered, challenging the rational design of Ag aerogels. Additionally, the chemical reactivity of Ag is often neglected in designing noble metal aerogels (NMAs), leaving significant potential untapped for advanced applications. Here, versatile engineering of Ag aerogels is realized by precisely tuning metal‐ion, metal‐ligand, and metal‐metal interactions, achieving a ligament size modulation across 3 orders of magnitude and downsizing the ligament size to <10 nm. The redox potential difference (ΔE)‐driven gel‐level conversion methodology is further established by utilizing the chemical activity of Ag and the self‐healing properties of noble metal hydrogels, stepwise yielding various self‐standing and hollow‐structured Ag‐M aerogels with record‐high performance for (photo)electrocatalysis. This study not only offers guidelines for manipulating multiscale structures of broad metal aerogels but also unveils their unprecedented potential for energy‐related applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信