Sabrina Moreyra, Marina Gonzalez-Polo, M. Noelia Barrios-Garcia
{"title":"入侵黄蜂巢对生态系统功能的影响","authors":"Sabrina Moreyra, Marina Gonzalez-Polo, M. Noelia Barrios-Garcia","doi":"10.1002/ecy.70140","DOIUrl":null,"url":null,"abstract":"<p>Legacy effects, defined as persistent ecological impacts after a species extirpation or cessation of activity, can significantly influence ecosystem structure and function. While extensively studied in plant invasions, legacy effects of invasive animals may differ and remain largely unexplored. We assessed the afterlife effects of subterranean nests built by invasive <i>Vespula</i> social wasps on ecosystem properties in Patagonia, Argentina. We relocated wasp nests ~16 months after the colonies' death and collected soil samples from nest sites and adjacent control areas. In the laboratory, we analyzed soil nutrients, microbial biomass, and enzyme activity. Additionally, we conducted a greenhouse experiment to measure the nests' effect on plant growth. Our results show significant effects on soil properties, including a 1.5-fold increase in total C, 2-fold increase in total N, and 54-fold increase in P compared to control soils. Furthermore, we found a 1.5-fold increase in microbial biomass and a 1.75-fold increase in enzyme activity. These changes enhanced plant performance, with seedlings grown in nest soil showing a 13-fold increase in biomass. Overall, our results show that invasive wasps create lasting legacy effects persisting more than a year after the colony's death, influencing plant growth and potentially increasing spatial heterogeneity within the invaded ecosystem.</p>","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"106 7","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecy.70140","citationCount":"0","resultStr":"{\"title\":\"Afterlife effects of invasive wasp nests on ecosystem functioning\",\"authors\":\"Sabrina Moreyra, Marina Gonzalez-Polo, M. Noelia Barrios-Garcia\",\"doi\":\"10.1002/ecy.70140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Legacy effects, defined as persistent ecological impacts after a species extirpation or cessation of activity, can significantly influence ecosystem structure and function. While extensively studied in plant invasions, legacy effects of invasive animals may differ and remain largely unexplored. We assessed the afterlife effects of subterranean nests built by invasive <i>Vespula</i> social wasps on ecosystem properties in Patagonia, Argentina. We relocated wasp nests ~16 months after the colonies' death and collected soil samples from nest sites and adjacent control areas. In the laboratory, we analyzed soil nutrients, microbial biomass, and enzyme activity. Additionally, we conducted a greenhouse experiment to measure the nests' effect on plant growth. Our results show significant effects on soil properties, including a 1.5-fold increase in total C, 2-fold increase in total N, and 54-fold increase in P compared to control soils. Furthermore, we found a 1.5-fold increase in microbial biomass and a 1.75-fold increase in enzyme activity. These changes enhanced plant performance, with seedlings grown in nest soil showing a 13-fold increase in biomass. Overall, our results show that invasive wasps create lasting legacy effects persisting more than a year after the colony's death, influencing plant growth and potentially increasing spatial heterogeneity within the invaded ecosystem.</p>\",\"PeriodicalId\":11484,\"journal\":{\"name\":\"Ecology\",\"volume\":\"106 7\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecy.70140\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecy.70140\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology","FirstCategoryId":"93","ListUrlMain":"https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecy.70140","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Afterlife effects of invasive wasp nests on ecosystem functioning
Legacy effects, defined as persistent ecological impacts after a species extirpation or cessation of activity, can significantly influence ecosystem structure and function. While extensively studied in plant invasions, legacy effects of invasive animals may differ and remain largely unexplored. We assessed the afterlife effects of subterranean nests built by invasive Vespula social wasps on ecosystem properties in Patagonia, Argentina. We relocated wasp nests ~16 months after the colonies' death and collected soil samples from nest sites and adjacent control areas. In the laboratory, we analyzed soil nutrients, microbial biomass, and enzyme activity. Additionally, we conducted a greenhouse experiment to measure the nests' effect on plant growth. Our results show significant effects on soil properties, including a 1.5-fold increase in total C, 2-fold increase in total N, and 54-fold increase in P compared to control soils. Furthermore, we found a 1.5-fold increase in microbial biomass and a 1.75-fold increase in enzyme activity. These changes enhanced plant performance, with seedlings grown in nest soil showing a 13-fold increase in biomass. Overall, our results show that invasive wasps create lasting legacy effects persisting more than a year after the colony's death, influencing plant growth and potentially increasing spatial heterogeneity within the invaded ecosystem.
期刊介绍:
Ecology publishes articles that report on the basic elements of ecological research. Emphasis is placed on concise, clear articles documenting important ecological phenomena. The journal publishes a broad array of research that includes a rapidly expanding envelope of subject matter, techniques, approaches, and concepts: paleoecology through present-day phenomena; evolutionary, population, physiological, community, and ecosystem ecology, as well as biogeochemistry; inclusive of descriptive, comparative, experimental, mathematical, statistical, and interdisciplinary approaches.