{"title":"基于梯度电荷修饰可持续木源纳米通道的自供电机械纳米流体发生器","authors":"Lizhen Chen, Jade Poisson, Yifei Zhan, Cheng Li, Minghao Zhang, Kai Zhang","doi":"10.1002/aenm.202502153","DOIUrl":null,"url":null,"abstract":"The growing demand for self‐powered technology in portable and wearable electronics has spurred significant advancements in energy harvesting systems. However, conventional mechanical generators based on triboelectric and piezoelectric effects are limited by short discharge durations, despite achieving high output potentials. Here, a mechanical nanofluidic generator (MNG) is reported with gradient charge‐modified nanochannels, designed for mechanical energy harvesting. The MNG features highly aligned nanochannels with engineered surface charges, enabling a peak output voltage of 10.58 ± 1.29 V and a prolonged energy release time of 675.80 ± 112.08 s, with orders of magnitude longer than traditional generators that normally discharge in milliseconds to microseconds. This superior performance is attributed to the synergistic effects of gradient surface charge modification and enhanced interactions between transport ions and surface charges. This performance is attributed to the synergistic effects of surface charge gradients and strengthened ion–surface interactions, underscoring the MNG's potential for next‐generation self‐powered systems.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"15 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self‐Powered Mechanical Nanofluidic Generators Based on Gradient Charge‐Modified Sustainable Wood‐Derived Nanochannels\",\"authors\":\"Lizhen Chen, Jade Poisson, Yifei Zhan, Cheng Li, Minghao Zhang, Kai Zhang\",\"doi\":\"10.1002/aenm.202502153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing demand for self‐powered technology in portable and wearable electronics has spurred significant advancements in energy harvesting systems. However, conventional mechanical generators based on triboelectric and piezoelectric effects are limited by short discharge durations, despite achieving high output potentials. Here, a mechanical nanofluidic generator (MNG) is reported with gradient charge‐modified nanochannels, designed for mechanical energy harvesting. The MNG features highly aligned nanochannels with engineered surface charges, enabling a peak output voltage of 10.58 ± 1.29 V and a prolonged energy release time of 675.80 ± 112.08 s, with orders of magnitude longer than traditional generators that normally discharge in milliseconds to microseconds. This superior performance is attributed to the synergistic effects of gradient surface charge modification and enhanced interactions between transport ions and surface charges. This performance is attributed to the synergistic effects of surface charge gradients and strengthened ion–surface interactions, underscoring the MNG's potential for next‐generation self‐powered systems.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202502153\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202502153","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Self‐Powered Mechanical Nanofluidic Generators Based on Gradient Charge‐Modified Sustainable Wood‐Derived Nanochannels
The growing demand for self‐powered technology in portable and wearable electronics has spurred significant advancements in energy harvesting systems. However, conventional mechanical generators based on triboelectric and piezoelectric effects are limited by short discharge durations, despite achieving high output potentials. Here, a mechanical nanofluidic generator (MNG) is reported with gradient charge‐modified nanochannels, designed for mechanical energy harvesting. The MNG features highly aligned nanochannels with engineered surface charges, enabling a peak output voltage of 10.58 ± 1.29 V and a prolonged energy release time of 675.80 ± 112.08 s, with orders of magnitude longer than traditional generators that normally discharge in milliseconds to microseconds. This superior performance is attributed to the synergistic effects of gradient surface charge modification and enhanced interactions between transport ions and surface charges. This performance is attributed to the synergistic effects of surface charge gradients and strengthened ion–surface interactions, underscoring the MNG's potential for next‐generation self‐powered systems.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.