通过协同缺陷和能量转移工程实现超快高效氧化物闪烁体的亚150皮秒TOF - PET成像

IF 10 1区 物理与天体物理 Q1 OPTICS
Chengyi Li, Shuwen Zhao, Aochen Zhang, Zhongjun Xue, Peng Qiu, Fan Yang, Dongzhou Ding
{"title":"通过协同缺陷和能量转移工程实现超快高效氧化物闪烁体的亚150皮秒TOF - PET成像","authors":"Chengyi Li, Shuwen Zhao, Aochen Zhang, Zhongjun Xue, Peng Qiu, Fan Yang, Dongzhou Ding","doi":"10.1002/lpor.202500767","DOIUrl":null,"url":null,"abstract":"High‐energy physics and nuclear medicine urgently demand ultrafast and efficient scintillators. Compared to organic and halide scintillators, cerium‐doped oxide scintillators stand out for their superior overall performance (e.g., chemical stability, radiation hardness), yet their slow decay dynamics (tens of nanoseconds) severely limit applications in ultrafast detection. Here, a novel strategy is proposed by creating Yb<jats:sup>3+</jats:sup>‐mediated non‐radiative energy transfer pathways and synergistically introducing multi‐site cation codoping (Li<jats:sup>+</jats:sup>, Ca<jats:sup>2+</jats:sup>, and Al<jats:sup>3+</jats:sup>) to suppress electron traps. The resulting Li(LuYCaYb)<jats:sub>2</jats:sub>(SiAl)O<jats:sub>5</jats:sub>:Ce scintillators overcome the intrinsic lifetime barrier, achieving an ultrafast decay time of 7.3 ns (30.6% contribution), along with a high light yield (25 000 photons MeV<jats:sup>−1</jats:sup>) and minimal afterglow (0.02% at 40 ms). These advancements enable 149 ps coincidence time resolution in a clinically‐sized (3 × 3 × 18 mm<jats:sup>3</jats:sup>) crystal for time‐of‐flight positron emission tomography, outperforming commercial LYSO:Ce systems (214 ps) by 30%. This work provides a universal strategy for designing ultrafast and efficient oxide scintillators, advancing applications from particle detection to nuclear medical imaging.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"26 1","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enabling Sub‐150 Picosecond TOF‐PET Imaging with Ultrafast‐Efficient Oxide Scintillators by Synergistic Defect and Energy Transfer Engineering\",\"authors\":\"Chengyi Li, Shuwen Zhao, Aochen Zhang, Zhongjun Xue, Peng Qiu, Fan Yang, Dongzhou Ding\",\"doi\":\"10.1002/lpor.202500767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High‐energy physics and nuclear medicine urgently demand ultrafast and efficient scintillators. Compared to organic and halide scintillators, cerium‐doped oxide scintillators stand out for their superior overall performance (e.g., chemical stability, radiation hardness), yet their slow decay dynamics (tens of nanoseconds) severely limit applications in ultrafast detection. Here, a novel strategy is proposed by creating Yb<jats:sup>3+</jats:sup>‐mediated non‐radiative energy transfer pathways and synergistically introducing multi‐site cation codoping (Li<jats:sup>+</jats:sup>, Ca<jats:sup>2+</jats:sup>, and Al<jats:sup>3+</jats:sup>) to suppress electron traps. The resulting Li(LuYCaYb)<jats:sub>2</jats:sub>(SiAl)O<jats:sub>5</jats:sub>:Ce scintillators overcome the intrinsic lifetime barrier, achieving an ultrafast decay time of 7.3 ns (30.6% contribution), along with a high light yield (25 000 photons MeV<jats:sup>−1</jats:sup>) and minimal afterglow (0.02% at 40 ms). These advancements enable 149 ps coincidence time resolution in a clinically‐sized (3 × 3 × 18 mm<jats:sup>3</jats:sup>) crystal for time‐of‐flight positron emission tomography, outperforming commercial LYSO:Ce systems (214 ps) by 30%. This work provides a universal strategy for designing ultrafast and efficient oxide scintillators, advancing applications from particle detection to nuclear medical imaging.\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/lpor.202500767\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202500767","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

高能物理和核医学迫切需要超快、高效的闪烁体。与有机和卤化物闪烁体相比,铈掺杂氧化物闪烁体以其优越的整体性能(例如,化学稳定性,辐射硬度)而突出,但其缓慢的衰变动力学(数十纳秒)严重限制了在超快检测中的应用。本文提出了一种新的策略,通过创建Yb3+介导的非辐射能量转移途径并协同引入多位点阳离子共掺杂(Li+, Ca2+和Al3+)来抑制电子陷阱。由此产生的Li(LuYCaYb)2(SiAl)O5:Ce闪烁体克服了本质寿命障碍,实现了7.3 ns的超快衰减时间(贡献30.6%),以及高光产率(25,000光子MeV−1)和最小的余光(在40 ms时为0.02%)。这些进步使临床尺寸(3 × 3 × 18 mm3)晶体的飞行时间正电子发射断层扫描的时间分辨率达到149 ps,比商用LYSO:Ce系统(214 ps)高30%。这项工作为设计超快速和高效的氧化物闪烁体提供了一种通用策略,促进了从粒子检测到核医学成像的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enabling Sub‐150 Picosecond TOF‐PET Imaging with Ultrafast‐Efficient Oxide Scintillators by Synergistic Defect and Energy Transfer Engineering
High‐energy physics and nuclear medicine urgently demand ultrafast and efficient scintillators. Compared to organic and halide scintillators, cerium‐doped oxide scintillators stand out for their superior overall performance (e.g., chemical stability, radiation hardness), yet their slow decay dynamics (tens of nanoseconds) severely limit applications in ultrafast detection. Here, a novel strategy is proposed by creating Yb3+‐mediated non‐radiative energy transfer pathways and synergistically introducing multi‐site cation codoping (Li+, Ca2+, and Al3+) to suppress electron traps. The resulting Li(LuYCaYb)2(SiAl)O5:Ce scintillators overcome the intrinsic lifetime barrier, achieving an ultrafast decay time of 7.3 ns (30.6% contribution), along with a high light yield (25 000 photons MeV−1) and minimal afterglow (0.02% at 40 ms). These advancements enable 149 ps coincidence time resolution in a clinically‐sized (3 × 3 × 18 mm3) crystal for time‐of‐flight positron emission tomography, outperforming commercial LYSO:Ce systems (214 ps) by 30%. This work provides a universal strategy for designing ultrafast and efficient oxide scintillators, advancing applications from particle detection to nuclear medical imaging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信