高效钙钛矿太阳能电池通过抑制分子间聚集在孔选择接触

IF 32.3 1区 物理与天体物理 Q1 OPTICS
Danpeng Gao, Bo Li, Xianglang Sun, Qi Liu, Chunlei Zhang, Liangchen Qian, Zexin Yu, Xintong Li, Xin Wu, Baoze Liu, Ning Wang, Francesco Vanin, Xinxin Xia, Jie Gong, Nan Li, Xiao Cheng Zeng, Zhong’an Li, Zonglong Zhu
{"title":"高效钙钛矿太阳能电池通过抑制分子间聚集在孔选择接触","authors":"Danpeng Gao, Bo Li, Xianglang Sun, Qi Liu, Chunlei Zhang, Liangchen Qian, Zexin Yu, Xintong Li, Xin Wu, Baoze Liu, Ning Wang, Francesco Vanin, Xinxin Xia, Jie Gong, Nan Li, Xiao Cheng Zeng, Zhong’an Li, Zonglong Zhu","doi":"10.1038/s41566-025-01725-x","DOIUrl":null,"url":null,"abstract":"<p>Hole-selective contacts are crucial for improving the performance of perovskite solar cells, but their optimization still faces obstacles. For example, it is challenging to achieve uniform deposition and prevent aggregation of small-molecule materials during solution processing, negatively impacting cell efficiency, reproducibility and stability. Here we co-deposit a new p-type small molecule (D4PA) with the perovskite film. The intramolecular C–C coupling in D4PA enables strong multi-anchoring interactions with both the perovskite and substrate, enhancing interfacial charge transport and inhibiting defect formation within the perovskite layer. The C–C coupling also introduces steric hindrance, creating twisted molecular conformations that effectively prevent molecular aggregation, extend the solution processability and increase device reproducibility. Our devices exhibit a certified power conversion efficiency of 26.72% and a certified maximum power point tracking efficiency of 26.14% in small-area devices. A power conversion efficiency of 23.37% and a certified maximum power point tracking efficiency of 22.66% are achieved in a mini-module with an effective area of 10.86 cm<sup>2</sup>. The devices maintain over 97.2% of their initial efficiency after 2,500 h of continuous operation at their maximum power point.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"37 1","pages":""},"PeriodicalIF":32.3000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-efficiency perovskite solar cells enabled by suppressing intermolecular aggregation in hole-selective contacts\",\"authors\":\"Danpeng Gao, Bo Li, Xianglang Sun, Qi Liu, Chunlei Zhang, Liangchen Qian, Zexin Yu, Xintong Li, Xin Wu, Baoze Liu, Ning Wang, Francesco Vanin, Xinxin Xia, Jie Gong, Nan Li, Xiao Cheng Zeng, Zhong’an Li, Zonglong Zhu\",\"doi\":\"10.1038/s41566-025-01725-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hole-selective contacts are crucial for improving the performance of perovskite solar cells, but their optimization still faces obstacles. For example, it is challenging to achieve uniform deposition and prevent aggregation of small-molecule materials during solution processing, negatively impacting cell efficiency, reproducibility and stability. Here we co-deposit a new p-type small molecule (D4PA) with the perovskite film. The intramolecular C–C coupling in D4PA enables strong multi-anchoring interactions with both the perovskite and substrate, enhancing interfacial charge transport and inhibiting defect formation within the perovskite layer. The C–C coupling also introduces steric hindrance, creating twisted molecular conformations that effectively prevent molecular aggregation, extend the solution processability and increase device reproducibility. Our devices exhibit a certified power conversion efficiency of 26.72% and a certified maximum power point tracking efficiency of 26.14% in small-area devices. A power conversion efficiency of 23.37% and a certified maximum power point tracking efficiency of 22.66% are achieved in a mini-module with an effective area of 10.86 cm<sup>2</sup>. The devices maintain over 97.2% of their initial efficiency after 2,500 h of continuous operation at their maximum power point.</p>\",\"PeriodicalId\":18926,\"journal\":{\"name\":\"Nature Photonics\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":32.3000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41566-025-01725-x\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-025-01725-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

孔选择接触对于提高钙钛矿太阳能电池的性能至关重要,但其优化仍然面临障碍。例如,在溶液处理过程中,实现均匀沉积和防止小分子材料聚集是具有挑战性的,这会对电池的效率、可重复性和稳定性产生负面影响。在这里,我们与钙钛矿膜共沉积了一种新的p型小分子(D4PA)。D4PA中的分子内C-C耦合能够与钙钛矿和衬底进行强多锚定相互作用,增强界面电荷传输并抑制钙钛矿层内缺陷的形成。C-C耦合还引入了位阻,产生扭曲的分子构象,有效地防止了分子聚集,延长了溶液的可加工性,提高了设备的可重复性。我们的器件在小面积器件中具有26.72%的认证功率转换效率和26.14%的认证最大功率点跟踪效率。在有效面积为10.86 cm2的微型模块中,功率转换效率为23.37%,认证最大功率点跟踪效率为22.66%。在最大功率点连续运行2500小时后,这些设备保持了超过97.2%的初始效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-efficiency perovskite solar cells enabled by suppressing intermolecular aggregation in hole-selective contacts

High-efficiency perovskite solar cells enabled by suppressing intermolecular aggregation in hole-selective contacts

Hole-selective contacts are crucial for improving the performance of perovskite solar cells, but their optimization still faces obstacles. For example, it is challenging to achieve uniform deposition and prevent aggregation of small-molecule materials during solution processing, negatively impacting cell efficiency, reproducibility and stability. Here we co-deposit a new p-type small molecule (D4PA) with the perovskite film. The intramolecular C–C coupling in D4PA enables strong multi-anchoring interactions with both the perovskite and substrate, enhancing interfacial charge transport and inhibiting defect formation within the perovskite layer. The C–C coupling also introduces steric hindrance, creating twisted molecular conformations that effectively prevent molecular aggregation, extend the solution processability and increase device reproducibility. Our devices exhibit a certified power conversion efficiency of 26.72% and a certified maximum power point tracking efficiency of 26.14% in small-area devices. A power conversion efficiency of 23.37% and a certified maximum power point tracking efficiency of 22.66% are achieved in a mini-module with an effective area of 10.86 cm2. The devices maintain over 97.2% of their initial efficiency after 2,500 h of continuous operation at their maximum power point.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Photonics
Nature Photonics 物理-光学
CiteScore
54.20
自引率
1.70%
发文量
158
审稿时长
12 months
期刊介绍: Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection. The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays. In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信