用于硅基锂离子电池高效预锂化的元素工程硼酸锂。

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chao-Fan Gu,Xin Chang,Shuhao Xiao,Zi-Yi Zhou,Chen Li,Boheng Yuan,Qinghai Meng,Yu-Guo Guo
{"title":"用于硅基锂离子电池高效预锂化的元素工程硼酸锂。","authors":"Chao-Fan Gu,Xin Chang,Shuhao Xiao,Zi-Yi Zhou,Chen Li,Boheng Yuan,Qinghai Meng,Yu-Guo Guo","doi":"10.1002/adma.202510189","DOIUrl":null,"url":null,"abstract":"Enhancing the energy density of lithium-ion batteries (LIBs) remains a critical challenge for advancing next-generation energy storage technologies. Silicon-based anodes offer significantly higher theoretical capacitites, but their practical application is hindered by low initial coulombic efficiency (ICE), leading to substantial lithium loss and rapid full cell performance degradation. Herein, a novel prelithiation agent, lithium borate (LBO), based on the ultralight, cost-effective, and d-orbital-free non-metallic element boron (B) is presented. LBO features a core-shell architecture, consisting of a crystalline Li3BO3 core encapsulated by Li2CO3 and amorphous carbon, delivering an exceptional initial charge capacity of 692 mAh g-1 and superior atmospheric stability with 70% capacity retention after 8 days of ambient exposure. When applied in SiOx||LRLO (Li-rich layered oxide) pouch cells, LBO enhances the gravimetric and volumetric energy density by 14.7% and 21.8%, respectively, while effectively suppressing the irreversible LRLO degradation caused by Li deficiency. This work introduces an element-centric design methodology for prelithiation agents, providing a promising route to propel the development of high-energy-density LIBs.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"22 1","pages":"e10189"},"PeriodicalIF":27.4000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Element-Engineered Lithium Borate for High-Efficiency Prelithiation in Silicon-Based Lithium-Ion Batteries.\",\"authors\":\"Chao-Fan Gu,Xin Chang,Shuhao Xiao,Zi-Yi Zhou,Chen Li,Boheng Yuan,Qinghai Meng,Yu-Guo Guo\",\"doi\":\"10.1002/adma.202510189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enhancing the energy density of lithium-ion batteries (LIBs) remains a critical challenge for advancing next-generation energy storage technologies. Silicon-based anodes offer significantly higher theoretical capacitites, but their practical application is hindered by low initial coulombic efficiency (ICE), leading to substantial lithium loss and rapid full cell performance degradation. Herein, a novel prelithiation agent, lithium borate (LBO), based on the ultralight, cost-effective, and d-orbital-free non-metallic element boron (B) is presented. LBO features a core-shell architecture, consisting of a crystalline Li3BO3 core encapsulated by Li2CO3 and amorphous carbon, delivering an exceptional initial charge capacity of 692 mAh g-1 and superior atmospheric stability with 70% capacity retention after 8 days of ambient exposure. When applied in SiOx||LRLO (Li-rich layered oxide) pouch cells, LBO enhances the gravimetric and volumetric energy density by 14.7% and 21.8%, respectively, while effectively suppressing the irreversible LRLO degradation caused by Li deficiency. This work introduces an element-centric design methodology for prelithiation agents, providing a promising route to propel the development of high-energy-density LIBs.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"22 1\",\"pages\":\"e10189\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202510189\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202510189","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

提高锂离子电池(LIBs)的能量密度仍然是推进下一代储能技术的关键挑战。硅基阳极提供了更高的理论容量,但其实际应用受到低初始库仑效率(ICE)的阻碍,导致大量的锂损失和快速的全电池性能下降。本文提出了一种基于超轻、低成本、无d轨道的非金属元素硼(B)的新型预锂化剂——硼酸锂(LBO)。LBO具有核壳结构,由Li2CO3和无定形碳封装的晶体Li3BO3核心组成,具有692 mAh g-1的卓越初始充电容量和卓越的大气稳定性,在环境暴露8天后容量保持70%。应用于SiOx||富含锂的层状氧化物(LRLO)袋状电池中,LBO的重量能量密度和体积能量密度分别提高了14.7%和21.8%,同时有效抑制了锂缺乏引起的LRLO不可逆降解。这项工作介绍了一种以元素为中心的预锂化剂设计方法,为推动高能量密度锂离子电池的发展提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Element-Engineered Lithium Borate for High-Efficiency Prelithiation in Silicon-Based Lithium-Ion Batteries.
Enhancing the energy density of lithium-ion batteries (LIBs) remains a critical challenge for advancing next-generation energy storage technologies. Silicon-based anodes offer significantly higher theoretical capacitites, but their practical application is hindered by low initial coulombic efficiency (ICE), leading to substantial lithium loss and rapid full cell performance degradation. Herein, a novel prelithiation agent, lithium borate (LBO), based on the ultralight, cost-effective, and d-orbital-free non-metallic element boron (B) is presented. LBO features a core-shell architecture, consisting of a crystalline Li3BO3 core encapsulated by Li2CO3 and amorphous carbon, delivering an exceptional initial charge capacity of 692 mAh g-1 and superior atmospheric stability with 70% capacity retention after 8 days of ambient exposure. When applied in SiOx||LRLO (Li-rich layered oxide) pouch cells, LBO enhances the gravimetric and volumetric energy density by 14.7% and 21.8%, respectively, while effectively suppressing the irreversible LRLO degradation caused by Li deficiency. This work introduces an element-centric design methodology for prelithiation agents, providing a promising route to propel the development of high-energy-density LIBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信